

OPTIMIZED EMBEDDED ARCHITECTURES AND TECHNIQUES FOR MACHINE

LEARNING ALGORITHMS FOR ON-CHIP AI ACCELERATION

by

SRIKANTH RAMADURGAM

B.E., Visvesvaraya Technological University, 2012

M.S., University of Southern California, 2015

A dissertation submitted to the Graduate Faculty of the

University of Colorado Colorado Springs

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering

2021

© 2021

SRIKANTH RAMADURGAM

ALL RIGHTS RESERVED

ii

This dissertation for the Doctor of Philosophy degree by

Srikanth Ramadurgam

has been approved for the

Department of Electrical and Computer Engineering

 by

Darshika G. Perera, Chair

Carlos A. Araujo

Terrance E. Boult

Thottam S. Kalkur

Byeong K. Lee

Date: February 12th, 2021

iii

Ramadurgam, Srikanth (Ph.D., Engineering – Electrical Engineering)

Optimized Embedded Architectures and Techniques for Machine Learning Algorithms
for On-Chip AI Acceleration

Dissertation directed by Assistant Professor Darshika G. Perera

ABSTRACT

In the era of smart and autonomous systems, machine learning is becoming the

cornerstone of these systems. Machine learning, a subset of artificial intelligence, is being

incorporated into various fields such as medical wearable in healthcare, smart cars in

transportation, etc. Since most of these systems are typically realized on embedded

devices, many machine learning applications are becoming common on these devices.

However, embedded devices have many constraints: stringent area and power, increased

speedup, reduced cost, and time-to-market. Furthermore, today’s machine learning

techniques are becoming increasingly complex requiring more processing power. Also,

these systems require real-time processing and analysis, in order to make dynamic

decisions. Consequently, new architectures and techniques are required to support and

accelerate machine learning applications on resource-constrained embedded devices.

Neural Networks and Support Vector Machines are supervised learning

algorithms that uses vast amount of data to train a machine learning model and draw

inferences from the patterns. These algorithms incorporate statistical analysis and

mathematical optimization techniques to analyze the data. Each data consists of large

number of features to represent characteristics of a given sample. The ability to handle

large-volume of data with high-dimensional features improves the accuracy performance

of a machine learning model and is time-consuming and computationally expensive

process. Currently, to accelerate the training of machine learning model, there are two

popular hardware platforms, GPU and FPGA. GPU are easy to use and provide high

iv

computing power. Due to their inherent parallelism, they provide significant acceleration

compared to other platforms. However, GPUs are expensive and power-hungry devices.

Due to high power consumption, the performance per watt cost reduces drastically. On

the other hand, FPGAs provide low-power support with high parallelism and

reprogrammable capabilities. But they provide limited computing power due to

implementation complexity. Although, GPUs are widely popular in data centers, FPGAs

can offer distinct advantages over GPUs with reprogrammable and reconfigurable

abilities, which is most suitable for the evolving machine learning landscape.

Our goal in this research is to investigate and create customized embedded

architectures to support on-chip hardware acceleration for data-intensive and compute-

intensive machine learning applications.

In this work, our first contribution introduces embedded software and hardware

architecture for support vector machines for both training and inference. We introduce

novel and efficient system-level architecture for convex optimization to improve the

accuracy performance of support vector machines. We introduce register transfer level

details for different configurable kernels to handle linear and non-linear data for real-time

applications. We architect efficient memory management techniques to build high-

throughput and low-latency system-level design. The proposed architectures allow us to

identify the benefits of internal structure of FPGA fabric to augment AI acceleration at

low cost, low power.

The second contribution of this work introduces a design space exploration using

parallel systolic arrays. Our contribution on design methodology and tradeoff analysis

extends the adaptability of the platforms to a wide range of machine learning

v

applications. We elaborate on the limitations of system IPs and overcome the associated

constraints of embedded devices.

The final contribution introduces embedded architecture for deep neural networks

for supervised learning. We introduce the design methodology which illustrates the

fundamental characteristics to take advantage of inherent parallelism nature of the deep

neural networks. This design methodology also aims to improve the current platforms to

develop a framework for ensemble architecture to cater for specific requirements of

certain application with no additional cost. The architectures are generic, independent and

configurable modules providing flexibility to enable real-time adaptable design to support

AI acceleration. Besides being an important contribution by itself, this radical approach

led to identify the benefits to establish a framework for future AI Chip design and on-

device AI systems.

Based on the proposed hardware acceleration modeling, analysis and optimization

of machine learning algorithms, this thesis offers a design methodology, guidelines, and

experimental analysis for different machine learning applications. The experimental

results and analysis presented herein demonstrate the feasibility of the research for

resource constrained embedded systems and also can be further extended to different

fields of applications in data science.

vi

ACKNOWLEDGMENTS

A special thanks to my thesis advisor for the continuous support and

encouragement throughout the coursework. The countless number of discussions I have

had with Dr. Perera gave me an opportunity to work on the exciting research areas.

Also, I would like to express my sincere gratitude to the advisory committee

members for their time and willingness to help me succeed. I greatly appreciate their

support and guidance throughout the program.

A genuine gratitude and appreciation to all the outstanding members of ECE

Department for giving me this opportunity. And finally, I would like to extend my best

regards to all my colleagues and friends at the university.

vii

TABLE OF CONTENTS

CHAPTER 1 ... 1

INTRODUCTION... 1

1.1 Introduction and motivation .. 1

1.2 Our research objectives ... 4

1.3 Our contributions ... 5

1.4 Dissertation organization ... 6

CHAPTER 2 ... 8

BACKGROUND STUDY ... 8

2.1 Hardware Platforms ... 8

2.1.1 Microprocessors ... 9

2.1.2 Application Specific Integrated Circuits (ASIC) ... 9

2.1.3 Graphics Processing Unit (GPU) ... 10

2.1.4 Reconfigurable computing platforms .. 10

2.2 Machine learning ... 11

2.2.1 Classification of Machine learning .. 12

2.3 Support Vector Machines (SVM) .. 15

2.4 Existing research work on hardware support for SVM 17

2.5 Chapter Summary .. 34

CHAPTER 3 ... 35

OPTIMIZED HARDWARE ARCHITECTURE FOR SVM CLASSIFIER 35

3.1 Background: Convex Optimization and Support Vector Machines 35

3.1.1 Optimal Hyper-Plane ... 35

3.1.2 Non-Linear Optimization ... 36

3.1.3 Convex Optimization ... 38

3.2 Design Approach and Development Platform ... 41

3.2.1 Experimental Platform and Benchmark Datasets .. 43

3.3 Our Proposed System-Level Architecture ... 45

3.3.1 Our Proposed Pre-fetching Techniques and Top-level Architecture 47

3.4 Embedded Architectures for Convex Optimization-Based SVM 52

3.4.1 Embedded Software Design ... 52

3.4.2 Embedded Hardware Architecture for CO-based SVM Algorithm 54

viii

3.4.2.1 Stage 1: Mathematical Kernels ... 56

3.4.2.2 Stage 2: Convex Optimization .. 60

3.4.2.2.1 Parameter Initialization Phase .. 60

3.4.2.2.2 Convex Optimization Phase ... 63

3.4.2.2.3 Bias Value Computation Phase .. 66

3.4.2.3 Stage 3: Testing... 67

3.5 EXPERIMENTAL RESULTS AND ANALYSIS .. 69

3.5.1 Analysis on Resource Utilization ... 71

3.5.2 Analysis on Classification Accuracy ... 73

3.5.2.1 Analysis of Classification Accuracy with Varying Number of Iterations
... 79

3.5.3 Analysis on Execution Time .. 81

3.5.3.1 Analysis of Execution Times with Varying Number of Iterations 84

3.5.4 Analysis on Speedup .. 86

3.5.5 Analysis on Existing Works on FPGA-Based Hardware Architectures for
CO-Based SVM .. 92

3.6 Chapter Summary .. 96

CHAPTER 4 ... 100

SYSTOLIC ARRAY ARCHITECTURE FOR SUPPORT VECTOR MACHINES .. 100

4.1 Introduction ... 100

4.2 RELATED WORK .. 103

4.3 Design Approach ... 106

4.3.1 Experimental Platform ... 107

4.3.2 Framework of Embedded Hardware .. 107

4.4 Experimental Results ... 110

4.5 Chapter Summary .. 119

CHAPTER 5 ... 120

OPTIMIZED HARDWARE ARCHITECTURE FOR DEEP NEURAL NETWORKS
 ... 120

5.1 Introduction and Motivation .. 121

5.2 Background Study ... 123

5.2.1 Deep Neural Networks ... 123

5.2.2 Literature Review... 124

5.3 Design Approach and Development Platform ... 128

ix

5.3.1 Comparison of Different Platforms ... 128

5.3.2 Design Approach and Evaluation Plan .. 132

5.3.3 Base System-level Design and Internal Architecture for Deep Neural
Network... 133

5.3.4 Experimental Platforms ... 136

5.4 Experimental Results and Analysis ... 138

5.4.1 Case 1: Analysis on Classification Accuracy with Limited Iterations 139

5.4.2 Case 2: Analysis on Classification Accuracy with Unsynchronized Trails141

5.4.3 Analysis on Execution Time relative to size of training vectors 142

5.5 Concluding Remarks ... 147

CHAPTER 6 ... 148

CONCLUSIONS AND FUTURE WORK .. 148

6.1 Conclusions ... 148

6.2 Future work.. 150

REFERENCES .. 152

A.1 Support Vector Machines – Scikit Learn ... 179

A.2 Datasets for Classification .. 181

x

LIST OF TABLES

Table 1. Resource Utilization for Embedded Hardware. .. 71

Table 2. Execution Time, Speedup, Accuracy for Cancer Benchmark Dataset for Linear
Kernel, with C=1, d=2, γ =0.0001. ... 72

Table 3. Execution Time, Speedup, Accuracy for Cancer Benchmark Dataset for
Polynomial Kernel, with C=1, d=2, γ =0.0001. .. 72

Table 4. Execution Time, Speedup, Accuracy for Cancer Benchmark Dataset for
Gaussian RBF Kernel, with C=1, d=2, γ =0.0001. ... 74

Table 5. Execution Time, Speedup, Accuracy for Ionosphere Benchmark Dataset for
Linear Kernel, with C=1, d=2, γ =0.0001. .. 74

Table 6. Execution Time, Speedup, Accuracy for Ionosphere Benchmark Dataset for
Polynomial Kernel, with C=1, d=2, γ =0.0001. .. 75

Table 7. Execution Time, Speedup, Accuracy for Ionosphere Benchmark Dataset for
Gaussian RBF Kernel, with C=1, d=2, γ =0.0001. ... 75

Table 8. Accuracy vs. Number of iterations – Cancer Dataset ... 79

Table 9. Accuracy vs. Number of iterations – Ionosphere Dataset 80

Table 10. Hardware execution time vs. Number of iterations – Cancer Dataset 84

Table 11. Hardware execution time vs. Number of iterations – Ionosphere Dataset 84

Table 12. Speedup Comparison – Cancer Dataset .. 88

Table 13. Speedup Comparison – Ionosphere dataset .. 88

Table 14. Python code - Accuracy for Cancer Benchmark Dataset 90

Table 15. Python code - Accuracy for Ionosphere Benchmark Dataset 91

Table 16. Execution time, speedup and accuracy for Cancer dataset – Linear
Mathematical Kernel ... 112

Table 17. Execution time, speedup and accuracy for Ionosphere dataset – Linear
Mathematical Kernel ... 113

Table 18. Resource utilization .. 113

Table 19. Execution time and speedup for Cancer dataset – with 2 instances 117

Table 20. Execution time and speedup for Cancer dataset – with 4 instances 118

Table 22. Advanced Extensible Interface Master Burst Transfer configuration 118

Table 21. Execution time and speedup for Cancer dataset – with 8 instances 119

Table 23: Literature review for neural networks .. 126

Table 24: Comparison of various computing platforms ... 129

Table 25: Tradeoff analysis for GPU & FPGA .. 131

xi

Table 26: Accuracy & Exec time for cancer dataset classification using SVM & NN with
limited iterations ... 139

Table 27: Accuracy & Exec time for cancer dataset classification using SVM & NN with
Unsynchronized trails ... 140

Table 28: Speedup Comparison – Cancer Dataset .. 143

Table 29. List of parameters for support vector machine in Scikit learn 179

Table 30. List of additional functions for support vector machine in Scikit learn 180

Table 31. Code example for support vector machine in Scikit learn 180

Table 32. Wisconsin Breast Cancer diagnostic datasets ... 181

Table 33. Wisconsin Breast Cancer diagnostic datasets – Data size 182

Table 34. Ionosphere datasets ... 182

Table 35. Ionosphere datasets – Data size .. 182

xii

LIST OF FIGURES

Figure 3.1: Hierarchical and modular-based design approach. Our design includes a
hierarchy of abstraction levels, where higher-level operations utilize lower-level
functional modules .. 43

Figure 3.2: Our Proposed System-Level Architecture. ... 46

Figure 3.3: Pre-fetching Technique. ... 49

Figure 3.4: Software and Functional Flow for CO-Based SVM Algorithm 53

Figure 3.5: Datapath for Liner and Polynomial Kernels ... 58

Figure 3.6: Datapath for Gaussian Radial Basis Function (RBF) Kernel 58

Figure 3.7: Datapath for Convex Optimization .. 63

Figure 3.8: Internal Architecture of Reconstruct Gradient Computation 65

Figure 3.9: Internal Architecture of Bias Value Computation .. 67

Figure 3.10: Datapath of Testing Process ... 68

Figure 3.11: Graph of Classification Accuracy vs. Data Size for Cancer Benchmark
Dataset... 77

Figure 3.12: Graph of Classification Accuracy vs. Data Size for Ionosphere Benchmark
Dataset... 77

Figure 3.13: Graph of Classification Accuracy vs. Number of Iterations for Cancer
Benchmark Dataset ... 78

Figure 3.14: Graph of Classification Accuracy vs. Number of Iterations for Ionosphere
Benchmark Dataset ... 79

Figure 3.15: Embedded Software for CO-Based SVM: Execution Times vs. Data Size for
Cancer Benchmark Dataset ... 82

Figure 3.16: Embedded Hardware for CO-Based SVM: Execution Times vs. Data Size
for Cancer Benchmark Dataset ... 83

Figure 3.17: Embedded Hardware for CO-Based SVM: Execution Times vs. Number of
Iterations for Cancer Benchmark Dataset ... 86

Figure 3.18: Embedded Hardware for CO-Based SVM: Execution Times vs. Number of
Iterations for Ionosphere Benchmark Dataset... 87

Figure 3.19: Embedded Hardware for CO-Based SVM: Speedup vs. Data Size for Cancer
Benchmark Dataset ... 89

Figure 3.20: Embedded Hardware for CO-Based SVM: Speedup vs. Data Size for
Ionosphere Benchmark Dataset .. 90

Figure 4.1: Three high-level stages of SVM algorithm .. 110

Figure 4.2: Speedup vs. Data size ... 111

Figure 4.3: Speedup vs. Data size ... 111

xiii

Figure 4.4: Graph of hardware execution time vs. data size for 1 and 2 instance – Cancer
datasets, Linear Kernel.. 114

Figure 4.5: Graph of hardware execution time vs. data size for 1 and 2 instance – Cancer
datasets, Polynomial Kernel.. 115

Figure 4.6: Graph of hardware execution time vs. data size for 1 and 2 instance – Cancer
datasets, RBF Kernel .. 115

Figure 4.7: Graph of speedup vs. data size for 1 and 2 instance – Cancer datasets, Linear
Kernel .. 116

Figure 4.8: Graph of speedup vs. data size for 1 and 2 instance – Cancer datasets,
Polynomial Kernel .. 116

Figure 4.9: Graph of speedup vs. data size for 1 and 2 instance – Cancer datasets, RBF
Kernel .. 117

Figure 5.1: Speculative analysis for GPU vs. FPGA comparison relative to application
size .. 130

Figure 5.3: Base system-level architecture for deep neural network 134

Figure 5.5: Internal Architecture and Data-flow for k-layer deep neural network 135

Figure 5.5: Internal Architecture of single neuron.. 135

Figure 5.6: Internal Architecture for Input Layer of Deep Neural Network 136

Figure 5.4: High-level multiple layers deep neural network .. 137

Figure 5.8: Plot of accuracy vs. training data size of cancer dataset using SVM and NN
with limited iterations ... 140

Figure 5.9: Plot of accuracy vs. training data size of cancer dataset using SVM and NN
with unsynchronized iterations ... 141

Figure 5.10: Embedded Software: Execution Times vs. Data Size for Cancer Benchmark
Dataset, case 1 (above) & 2 (below) ... 144

Figure 5.11: Embedded Hardware: Execution Times vs. Data Size for Cancer Benchmark
Dataset, case 1 (above) & 2 (below) ... 145

Figure 5.12: Embedded Hardware: Speedup vs. Data Size for Cancer Benchmark Dataset
... 146

xiv

LIST OF ABBREVIATIONS

AI Artificial Intelligence

AMBA Advanced Microcontroller Bus Architecture

ASCII American Standard Code for Information Interchange

ASIC Application-Specific Integrated Circuit

AXI Advanced Extensible Interface

BRAM Block Random-Access Memory

CAGR Compound Annual Growth Rate

CISC Complex Instruction Set Computer

CLB Configurable Logic Block

CPLD Complex Programmable Logic Device

DDR Double Data Rate

DMA Direct Memory Access

DSP Digital Signal Processor

EDK Embedded Development Kit

FPGA Field Programmable Gate Array

IDE Integrated Development Environment

IPIC Intellectual Property Interface Connection

IPIF Intellectual Property Interface

ISA Instruction Set Architecture

ISE Integrated Synthesis Environment

MAC Multiply-and-Accumulate

MIMD Multiple Instruction Multiple Data

MMU Memory Management Unit

PMIC Power Management Integrated Circuit

RISC Reduced Instruction Set Computer

SDK Software Development Kit

SIMD Single Instruction Multiple Data

SMO Sequential Minimal Optimization

SRAM Static Random-Access Memory

XPS Xilinx Platform Studio

1

CHAPTER 1

INTRODUCTION

1.1 Introduction and motivation

Embedded devices have significantly evolved over the past few years playing a

key role in the overall digital transformation. This includes rapid adoption of embedded

devices to build smart and connected ecosystems. At the same time, it has led to major

research interest to develop complex and efficient embedded design supporting wide

range of applications. On the other hand, embedded devices have numerous challenging

factors including stringent area, low cost, power consumption, and limited memory.

Consequently, these constraints pose serious challenges to the embedded systems

designers.

According to global statistical analysis [1], the market share for embedded

hardware devices is projected to grow at 6.1% compound annual growth rate (CAGR)

from 86.5 billion (USD) in 2020 to 116.2 billion (USD) by 2025, compared to embedded

software forecast [2], 12 billion USD in 2019 to 20 billion USD by 2025. The promising

growth rate of embedded hardware is expected to cover majority of the market share for

various application domains.

One such application domain that has become very common on embedded

devices is machine learning. Machine learning is a statistical method to automate data

analysis and is a subset of Artificial Intelligence. Innovations in artificial intelligence are

the key driving factors for developing powerful machine learning techniques. Some of

the applications of machine learning are: computer vision, medical diagnosis, online

customer support, speech recognition etc.

2

Increasingly, machine learning plays a crucial role in our day-to-day activities.

However, machine learning has many constraints in the real-world applications. One such

constraint is the speed performance. Machine learning involves two tasks: training and

testing (inference). During the training process, the machine learning model processes the

input data to extract important features. During the inference, the extracted features are

used to make output prediction. With the increase in the amount of data used for training,

the computational time increases exponentially. This exponential increase in the

computing time hinders the speed performance.

In order to satisfy the speed constraints, various platforms are used to improve the

speed performance such as general purpose dedicated Application-Specific-Integrated-

Circuits (ASICs) (including AI (Artificial Intelligence) chip), Graphical Processing Units

(GPUs), and Field Programmable Gate Arrays (FPGAs). A general purpose processor

provides high flexibility to support wide of range machine learning applications.

However, the processing speed is unable to keep pace with the computational demands of

machine learning applications. ASIC’s are one of the power efficient options and

fabricated for a specific application. Although, the ASICs is a feasible option to provide

hardware support to improve speed performance, changing the architecture and

fabricating a new integrated circuit is a high risk and time consuming process. On the

other hand, GPUs are the popular platforms for machine learning and provide immense

amount of processing power to accelerate the machine learning applications, but they are

power hungry devices diminishing overall performance per watt performance.

Comparatively, use of FPGAs is dramatically increasing due to their flexibility to support

3

various machine learning applications, are significantly faster and one of the power

efficient platforms.

In 2010, Microsoft research group [3] proposed augmenting the Central

Processing Units (CPUs) with FPGAs to enable machine learning applications.

Eventually in 2016, Microsoft incorporated FPGAs for inference. However, despite the

high cost and high power consumption, GPUs dominate the training process of machine

learning. Although, GPUs provide a potential solution to solve the speed performance

issue of compute-intensive and data-intensive machine learning applications, the power

consumption is significantly higher. [4] illustrates the power consumption of GPUs are

almost 45x times that the FPGAs. The high-power consumption reduces the overall

performance per watt and is not a viable option for portable applications.

Our previous analyses [131],[202] illustrates that FPGA-based systems are

currently the best avenue to support compute and data-intensive applications and

algorithms running on resource-constrained embedded devices. Furthermore, our

previous work on FPGA-based accelerators, architectures, and techniques for various

compute/data-intensive applications, including data mining and data analytics

[127],[128],[203],[204],[205],[206],[207], control systems [208],[209],[210], security

[211],[212],[213], machine learning [214],[215],[216],[217], and bioinformatics [218],

demonstrates that FPGA-based systems are the best option to support and accelerate

complex algorithms on embedded devices, considering the constraint associated with

these devices and the requirements of the applications running on these devices.

In this research work, we introduce customized and optimized embedded

hardware architectures to support and accelerate machine learning applications for

4

portable embedded devices. We utilize the FPGA platforms to illustrate the feasibility,

efficiency, and scalability of the platform for data-intensive and compute-intensive

applications. We also introduce systolic array architecture to demonstrate the crucial

architectural tradeoff to support and accelerate machine learning applications. In order to

achieve our goals, we have formulated our research objectives as mentioned in the

following section.

1.2 Our research objectives

The main objective of our research is to provide customized and optimized

embedded architectures to support on-chip hardware acceleration for machine learning

applications.

In order to achieve our main research objective, we have divided our research

work into three major stages. The objective of each progressive stage is as follows:

• In the first stage, we explore the scalability, efficiency, and feasibility of the

embedded hardware architectures to support both training and inference for

machine learning algorithms specifically for support vector machines and deep

neural network.

• In the second stage, we investigate the potential gain and the trade-offs with

respect to parallel processing, speed-performance, area-efficiency, and power

analysis of hardware architecture for the aforementioned machine learning

algorithms.

• In the third stage, we analyze and develop the design methodology to build

system-level architecture for FPGA-based design, considering the associated

constraints of embedded platforms. Formulating the design methodology includes

5

trade-off analysis for area and execution time (thus, speedup), number of

instances for parallel systolic array, adaptability of hardware design for different

machine learning approaches, efficient memory management techniques etc. We

aim to incorporate the insights gained from the two previous stages to develop

efficient hardware architecture for Convolutional neural networks.

1.3 Our contributions

In this research work, we make three major contributions corresponding to the three

major stages mentioned above.

For the first stage, we introduce optimized FPGA-based embedded hardware

architecture for support vector machines. We introduce embedded software and hardware

architecture to adapt an algorithm in different platforms. We design and integrate pre-

fetching and burst transfer techniques to reduce the memory access latency and to

facilitate real-time processing. We provide different configurable option for mathematical

kernels, which enables the user to select and utilize the most suitable kernel for linearly

and non-linearly separable data. We also introduce a generic chip-level hardware support

for convex optimization and achieved substantial performance gain to process large-

volume of data.

Our second major contribution is the design space exploration using parallel

systolic arrays. We introduce efficient and unique embedded hardware architecture with

systolic array configuration to accelerate both training and inference for data

classification. Based on the experimental analysis, we illustrate architectural tradeoffs to

distinguish the critical and main contributing factors for hardware acceleration. We

6

address and overcome the associated constraints of embedded platforms such as

limitations of hardware IPs capabilities and incorporating the IP modules for SoC design.

For the third major contribution, we utilize the outcome from stage 1 and stage 2

to build efficient neural network hardware architecture to support on-chip AI

acceleration. We introduce the design methodology which illustrates the fundamental

characteristics to take advantage of inherent parallelism nature of the deep neural

networks. This design methodology also aims to improve the current platforms to

develop a framework for ensemble architecture to cater for specific requirements of

certain application with no additional cost.

1.4 Dissertation organization

The Dissertation is organized as follows:

In this chapter, we have presented a brief overview to introduce embedded

platforms, machine learning, our objectives and motivations for our research work.

In chapter 2, we present the background study for different means of hardware

support including general-purpose processor, ASICs, GPUs & FPGAs. We discuss the

framework for hardware and software architecture. We present the details of existing

works on hardware implementations for similar machine learning algorithms.

In chapter 3, we present our design approach, system-level architecture, and novel

techniques to support machine learning applications are detailed in this chapter. Our

novel, unique, customized and optimized FPGA-based embedded hardware accelerator

for three stages of CO-based SVM algorithm is introduced along with our embedded

software design.

7

In chapter 4, we present background study for systolic arrays, description for the

design approach and framework of parallel systolic configuration for hardware

accelerator. Experimental results and analysis are reported. Experiments are carried out to

illustrate the feasibility and scalability of the embedded design for machine learning.

In chapter 5, we present the architectural details for deep neural networks and

discuss the potential of ensemble architecture for different applications. Discussions for

experimental results and analysis in terms of timing, speedup, area, and accuracy are

reported.

In chapter 6, we summarize our contributions with concluding remarks and future

directions for our research work.

8

CHAPTER 2

BACKGROUND STUDY

In this chapter, we present the background study for our research. Recently,

machine learning applications are commonly implemented on embedded devices because

of low cost, low power, portable, high performance etc. [5]. In section 2.1, we discuss

various means of computing platforms for application specific operations. In sections 2.2,

we elaborate on the framework for machine learning applications and techniques. Also,

we discuss the optimization techniques utilized by the machine learning algorithms to

improve the reliability of the machine learning applications. We provide the details about

the existing work on hardware support in this section.

In this chapter, we provide the necessary mathematical equations to illustrate the

development of classification algorithm; however, for extensive details about the

derivation of these equations, data visualization we refer to the related materials in the

existing literature. Few recommended pre-requisites include fundamental concepts of

digital design flow, logic synthesis, RTL design for hardware architecture, probability

theory for machine learning, linear algebra and calculus.

2.1 Hardware Platforms

In this section, we discuss about the various means of computing platforms

suitable for different application domains. Some of the most commonly used hardware

platforms are general-purpose processor, application-specific integrated circuits, graphic

processing units and reconfigurable devices [6]. The anticipated new-emerging

technologies such as quantum computing, photonic computing and other exascale

9

computing projects are beyond the scope of this research work. In the following

subsections, we discuss brief overview of each of them.

2.1.1 Microprocessors

The general-purpose micro-processors are the most predominant computing

platforms widely used in all the desktop computers, laptops etc. Microprocessors are

designed to execute specific set of arithmetic & logical operations and provide high

flexibility to develop large number of applications [7]. In the past few decades,

significant research work has been devoted to improve the performance by incorporating

different techniques and methodologies.

The flexibility offered by a microprocessor comes at the cost of inferior

performance for specific applications. Power consumption of these devices is much

higher and is not suitable for specific applications. Power consumption is a critical issue

for portable and embedded devices [8]. In order to address this issue, Application

Specific Integrated Circuits (ASIC) plays a major role to overcome the power issue,

including others such as area. We discuss the details of the ASICs in the following sub-

section.

2.1.2 Application Specific Integrated Circuits (ASIC)

Unlike microprocessor, ASIC are dedicated hardware module for a particular use.

Application-Specific Integrated Circuits (ASIC) as the name suggests it is application

specific IC targeted to perform a specific task [9]. Since these integrated circuits are

customized to perform only a specific task, these devices are small, fast, power efficient

systems with minimal routing & timing issues. However, the applications cannot be

modified once after the device is fabricated compromising the flexibility criteria. In case,

10

any additional functionality needs to be added to the existing chip design, it requires re-

fabrication, which in turn a time consuming process. Many companies have developed

their own AI chips to support and accelerate the current global demand for AI

applications.

2.1.3 Graphics Processing Unit (GPU)

Graphic processing Units (GPU) are specialized devices to accelerate and perform

mathematical computations primarily for graphic display devices. Recently, there is a

growing interest to utilize GPU for non-graphic applications [10] [11]. GPUs have

thousands of cores per chip favorable for high-performance computations with high

memory bandwidth. Most of the applications implemented on a CPU will most likely

utilize the GPU as a co-processor design to accelerate an application. These devices have

shown significant improvement for applications ranging from graphic displays to

scientific computing. Although GPUs provide high computing power but they are

expensive devices with high power consumption. In order to utilize the full potential of a

GPU requires a great deal of efforts from the user/designer.

2.1.4 Reconfigurable computing platforms

Field programmable Gate Arrays (FPGAs) are one of the most popular

reconfigurable devices [12] [13]. Due to their inherent nature of re-programmability, a

number of different applications can be efficiently developed and prototyped for faster

time-to-market requirements. FPGAs also offer other useful solutions to develop complex

design such as providing embedded processor, DSP blocks, ready-to-use IP cores, custom

IP cores, I/O interfaces etc [14]. The important factors such as low-power requirements,

less system cost, adaptable platforms provides an opportunities to design a high-

11

performance computing platforms for large-scale data applications such as machine

learning. However, the run-time to translate and map an RTL design takes significant

amount of time and in certain cases routing the individual blocks fails due to limited

interconnect resources. In such cases, the user needs to carefully modify the design to

meet the synthesis rules.

2.2 Machine learning

Machine Learning (ML) is one of the most important research areas and is

continuously evolving in many different fields. Some of the interesting areas of

applications are autonomous cars, biometrics, computer vision, geo-statistics, medical

diagnosis, speech recognition, automated trading platforms, hand writing recognition,

virtual personal assistant etc. [15]. According to a market research [16], the global market

for machine learning was $1.4 billion in 2017 and is expected to reach $8.8 billion by

2022 with an annual growth rate of 43.6%. The aforementioned facts demonstrate that

machine learning market will continue to thrive as smart and autonomous systems

emerge.

Machine learning, a subset of artificial intelligence which enables a system to

learn, identify patterns, and make decisions without being explicitly programmed, and

with minimal or no human intervention [15]. In these fields, the system should be capable

of making critical decisions based on primary characteristic features. Machine learning

typically involves many important data mining tasks, and can be categorized into

supervised learning (i.e., classification) and unsupervised learning (i.e., clustering) [15].

The basic premise of machine learning is to create techniques that can learn from the

sample input data (known as the training data), by performing statistical analysis, in order

12

to make accurate predictions or decisions on the data [17]. With the advent of smart and

autonomous systems, machine learning is becoming the cornerstone in creating these

systems, in which an autonomous car making a decision to determine the type of object in

front. Also, in the field of medical diagnosis, these decisions have helped many doctors to

diagnose whether a certain tumor is malignant or benign.

In the following sub-sections, we briefly discuss the necessary details required for

illustrating our hardware implementation in section 3. Although, we provide the

necessary mathematical equations to describe certain concepts of the classification and

mathematical optimization, we also direct to specific proceedings for extensive details.

2.2.1 Classification of Machine learning

Developing a machine learning models require a specific set of data called

training set and testing set. Each set of data samples consists of an input vectors, denoted

by x. Each input vector, x is composed of N number of features representing a specific

characteristic of the associated datasets called training set, denoted by {x1, x2, x3,…,xN}.

Each training set is systematically categorized into respective output labels called target

value, denoted by yt. On the other hand, testing sets includes only the input vectors and

the machine learning will predict the associated target values based on the features

learned during the training process. The performance of the machine learning algorithms

is evaluated based on the ability of machine learning models to categorize correctly; this

is known as generalization [15].

Based on the utilization of the datasets, machine learning is broadly classified into

supervised learning, unsupervised learning and reinforcement learning. Each learning

process involves training and testing stages. From [18], the four popular subclass

13

involved in machine learning process are clustering, Classification, Regression and

Dimensionality Reduction. Clustering (unsupervised learning) [19] and Classification

(supervised learning) are most commonly used and plays a crucial role to determine the

category of an input sample. A regression method predicts the outcome of an input data

based on certain attributes and dimensionality reduction technique helps us to distinguish

between the non-trivial feature vectors. For our research purpose, we will limit our focus

to classification methods.

In supervised learning, the machine learning models is trained using a set of pre-

defined input vectors and output labels (training set). If the output vectors are to be

evaluated and assigned to a finite number of categories, such a process is called as

logistic regression, also referred as classification. Examples for classification are

handwriting analysis [20], cancer diagnosis [21], predicting stock prices [18] etc. On the

other hand, if the output values involves more than one continuous variables, such a

process is knows a linear regression. Examples for linear regression include real-estate

price analysis, melting of polar ice caps etc.

In unsupervised learning, the training set consists of only the input vectors

without the corresponding output labels [15]. In this process, a model groups similar set

of data to predict future outcomes, this is called as clustering. Examples for unsupervised

learning include grouping customers based on their purchasing habits, grouping

astronomical objects etc. In the unsupervised learning, an association rule is also often

used to discover patterns that describe large portions of the available data sets, for

examples, customers in a specific group also tends to buy from other facet. Association

based learning is popular in the area of retail and logistics.

14

In the reinforcement learning, the objective is to maximize the rewards by

identifying a suitable action for a given situation [15]. The machine learning models

learns based on multiple attempts to learn from trail-and-error basis. For example,

reinforcement involves training a computer to play chess by thousands of trails and

exploring possible suitable action for a given situation.

In this research work, we focus on supervised learning (specifically,

classification) techniques. Classification techniques are employed by many machine

learning applications in various domains including medical, finance, and transportation.

There exist many classification algorithms; hence, selecting a suitable algorithm for a

specific application (or dataset) would significantly impact the accuracy of the results as

well as the overall system’s performance [15].

For instance, employing a linear classifier for non-linear separable data can

diminish the accuracy and efficiency of the results, which in turn can hinder the

subsequent analysis [15]. As a result, we investigate different classifiers (or classification

techniques/algorithms) utilized for machine learning applications. Next, as a case study,

we decided to focus on the Support Vector Machine (SVM) classification algorithm [22]

[23] [24] [25], since SVM has many advantages/traits that are deemed suitable for

machine learning applications.

For instance, SVM is more appropriate for classifying non-linear separable data

[26], enables classification in multi-dimensional space [24], is capable of handling high

dimensional data [27], and generate high accuracy results [27], [24]. In addition, the

accuracy and classification process of the SVM can be further improved by incorporating

non-linear optimization methods to find the optimal solutions [27]. Hence, we decide to

15

integrate the convex optimization (a widely used non-linear optimization methods) to the

SVM classifier in order to clearly distinguish between the two separate classes by

maximizing the margin width of the hyper-plane, which in turn leads to an optimal

solution [27].

2.3 Support Vector Machines (SVM)

The support vector machine (SVM), first introduced by Cortes and Vapnik in

1995 [28], is one of the novel machine learning techniques, based on the statistical

learning theory [29]. The SVM was initially developed for classification tasks, and was

later extended to regression analysis [30]. As stated in [15], [31], the SVM classifies the

data points based on its location with respect to the hyper-plane. We investigate the

published literature to get an insight into the concepts of the optimal hyper-plane, non-

linear optimization methods for SVMs, and decomposition methods for solving the

convex optimization for SVM.

For instance, SVM is more appropriate for classifying non-linearly separable data

[26], enables classification in multi-dimensional space [24], is capable of handling high

dimensional data [27], generate high accuracy results [27], [24], and can be extend to

regression problems. In addition, classification process of the SVM can be further

improved by incorporating non-linear optimization methods to find the optimal solutions

[27]. Comparison of SVM with the most commonly used neural networks is as follows:

• SVM are favorable for applications with limited availability of data samples

compared to neural networks.

• The neural network has shown some significant performance over the past few

years compared to SVM, but they are data hungry learning algorithms. In order to

16

train a neural network to achieve high accuracy output, we need massive amounts

of data. However, for certain applications, the availability of data is limited.

• Also, training a neural network requires spatial property, which means the order

of the input training samples determine the final output of the classifier. Changing

the input order has little to no effect on SVMs.

• Tuning the neural network hyper-parameters for a specific application is time-

consuming and a tedious process. On the other hand, we can analyze the hyper-

parameters of SVM by examining the values and determine a certain threshold.

• Since our aim is to provide a hardware support, we are designing the embedded

architecture on a hierarchical approach for both the classifier, which is beneficial

to configure the design to utilize shared resources. Since, SVM and NN share

some of the common operations; our hierarchical platforms can be easily

modified to utilize the generic IP modules for either of the classifier.

Embedded hardware architecture and acceleration solutions are relevant to almost

all the machine learning classifiers due to the recent accumulation of large-volume of

data. However, most of the classifiers fail to process high-dimensional features in large-

volume of data. Due these limitations, neural networks, support vector machines and

random forest data classifiers are among the top three classifiers in the field of machine

learning [32]. Although, these aforementioned classifiers are formulated to process high-

dimensional data, the execution time increases exponentially with respect to the number

of data samples. In order to improve the execution time, any optimization from software

perspective would be insufficient. Customized hardware architecture is essential in order

to reap actual benefits from these classifiers for real-time applications.

17

2.4 Existing research work on hardware support for SVM

We surveyed the existing research work on hardware support for the SVM

classifier. In this regard, we investigated ways to utilize Field Programmable Gated

Arrays (FPGAs) to design, develop, and implement high-dimension, large-scale data

classifier. We performed an extensive investigation on the existing works on FPGA-

based hardware architectures for CO-based SVM algorithms in the published literature.

Additional detailed analysis of other existing works can be found in some survey papers

such as [33] [34].

FPGA-based parallel processing hardware architecture was proposed for SVM

using stochastic gradient descent (SGD) as the training method, in [35]. The authors

demonstrated the scalability of the SGD approach for SVM in terms of fixed-point vs.

single-precision floating-point computations. The hardware design was generated using

the Xilinx System Generator design tool, and executed on Xilinx ML605 board with

Virtex-6 FPGA. In this case, the synthesis results were obtained and reported, in terms of

area, time, and throughput; however, the classification accuracy results were not reported.

From the results, it is evident that parallelization led to the increase in occupied area, thus

confirming that higher speedup due to parallelization, comes with the penalty of larger

occupied area on chip. The proposed design could have demonstrated to execute datasets

with more than 4 features/attributes, which is indeed a limitation when executing large

volume of data with many attributes. Conversely, our proposed design can execute

datasets with varying sizes and with any number of features/attributes.

In [4], an energy-efficient embedded binarized SVM architecture was proposed

and implemented on an FPGA. The computation kernels were designed in C/C++ and

transformed into HDL using Xilinx HLS (high-level synthesis) tools. The proposed

18

hardware design was executed on Xilinx Virtex-6/7 FPGAs. The results were obtained

and reported, in terms of area, speedup, power, and classification accuracy. The FPGA’s

performance matric results (especially speedup and power) were compared with that of

the CPU and GPU. From the results, it is evident that FPGA and GPU achieved

significant speedup compared to the CPU. However, the power consumption of the GPU

was significantly higher than that of the FPGA. These results illustrate that FPGA-based

hardware architecture for SVM can achieve better performance-per-Watt, thus suitable

for embedded devices with stringent power requirements.

An FPGA-based hardware accelerator was proposed for approximate SVM in

[36], utilizing two approximation techniques, including precision scaling and loop

perforation. The hardware was designed using Xilinx Vivado HLS tool, and executed on

Xilinx Zynq7 ZC706 board. The results were obtained and reported, in terms of area,

speedup, and classification accuracy. From the results, it is evident that the approximate

computing led to higher speedup, but with the penalty of larger occupied area (or

resource utilization) on chip, and lower classification accuracy. In some cases, the

significant accuracy loss did not compensate with significant increase in speedup.

In [37], an FPGA-based hardware design was proposed for SVM classifier. In this

case, three variable-size SVM models were implemented using different optimization

techniques. The proposed hardware was designed using Xilinx Vivado HLS tool, and

executed on Xilinx Zynq7 ZC702 board. The results were obtained and reported, in terms

of area, speedup, power, and classification accuracy. Also, in this paper, the training

phase was done offline on software; hence, the support vectors were pre-computed, and

forwarded to the proposed hardware design, which is created only for the testing phase.

19

An FPGA-based parallel processing architecture was proposed in [38] for training

phase of SVM using Sequential Minimal Optimization (SMO). The proposed hardware

design was executed on Xilinx Virtex-6/7/Ultra-scale FPGAs. The synthesis results were

obtained and reported, in terms of area, throughput, and speedup; however, the

classification accuracy results were not reported. In this case, the authors utilized the

hardware friendly kernel (HFK) for SVM training, which leads to reduction in precision

of the floating-point operations. Although marginal loss in accuracy is acceptable for

testing, utilizing HFKs for training would result in an inefficient construction of a hyper-

plane during training.

In [39], a FPGA-based hardware-software co-design was proposed to accelerate

the SVM algorithm by utilizing a two-level approach: first to optimize the global

structure of the SVM; and second to refine it through the design exploration. The

proposed architecture was designed using Xilinx Vivado HLS tool, and executed on

Xilinx Zynq Zedboard. The results were obtained and reported, in terms of area, latency,

and speedup; however, the classification accuracy results were not reported. As authors

indicated, for high values of SVM parameters, the resource utilization (i.e., occupied

area) increased significantly, which would be an issue for embedded devices with

stringent area requirements. In this paper, the authors extensively discuss and analyze the

advantages/disadvantages of utilizing the HLS tools to transform the designs written in

C/C+ to HDL, thus providing insight into the HLS inefficiencies, which would be very

useful when creating optimized hardware architectures in order to improve certain

performance metrics, including the latency.

20

An FPGA-based coarse-grained reconfigurable hardware architecture was

proposed in [40], for various machine learning (ML) algorithms, including SVM,

decision trees, and artificial neural networks. The hardware was designed using Xilinx

Vivado tool, and executed on Xilinx Virtex-7 FPGA. The results were obtained and

reported, in terms of area, and speedup; however, the classification accuracy results were

not reported. In this case, in order to change from one ML algorithm to another, authors

claim that the reconfigurable processing nodes (RPNs) of the proposed architecture, can

be reconfigured individually; however, no details are provided how this can be done. This

requires partial reconfiguration of the FPGA; thus, adding significant complexity to the

design process, which has not been addressed or discussed in the paper.

A scalable FPGA-based architecture was proposed in [41] to accelerate the SVM

classification. The hardware was designed in VHDL, and executed on Altera Stratix III

EP3SE260 board. The results were obtained and reported, in terms of speedup; however,

the occupied area was not reported. Furthermore, in this paper, the authors only proposed

the hardware design for the testing phase. Hence, the support vectors were pre-computed

and stored in the on-chip memory for subsequent processing during the testing phase. The

same authors proposed a design flow for the SVM training phase in [42].

An FPGA-based design was proposed for decision boundary conditions using

multiplier-less kernel implementation technique for image processing in [43]. In this

case, only the classification step of the SVM was implemented using the proposed

multiplier less techniques to reduce power. However, the training process of SVM was

computed offline using MATLAB, which in many cases requires the hardware support to

improve the computational time. The support vectors obtained from the MATLAB was

21

stored in the FPGA’s internal memory and utilized for decision boundary conditions. In

these scenarios, incorporating the multiplier less kernel technique might be useful in

order to reduce power but which in turn might add execution time for the overall decision

conditions. The power consumption was reported in the range of 1.479 to 2.051W for the

multiplier-less kernel implementation, which is high for decision boundary condition

computations.

In [79], a hardware design based on the stochastic gradient descent algorithm for

SVM was proposed. The authors demonstrate the scalability of the stochastic gradient

descent approach of SVM for fixed-point vs. floating point computations. The hardware

design was generated using the system generator tools. In regards to the system generator

tools, details were not found related to any inefficiencies of the system generator tools as

specified in [94]. Also, a brief comparison relative to the accuracy of the classifier would

be applicable for exponent implementation using look-up table and other alternative

approach. The comparison made in this paper could be in parallel in terms of seconds

saved to improve the performance.

In [82], the paper investigates the potential performance gain for SVM kernels

and decision boundary conditions. The authors measure the performance of these

operations on CPU, GPU and FPGA. Based on the results analysis, the speedup gain of a

GPU and FPGAs are significantly higher than a general purpose processor. However, the

power consumption of the GPUs is 50 times higher than a FPGA. This shows that the

FPGA-based designs can achieve a better perf/W.

An approximate computing approach to improve SVM performance was proposed

in [83]. In this approach, algorithmic approximation such as precision scaling and loop

22

perforation was utilized. Approximate computing can result in a high speed performance

and efficient power design at the cost of the accuracy of the machine learning model.

Since machine learning models are expanding into many accuracy critical applications, it

seems reasonable to consider a certain threshold for approximating. A speedup of 15x

was illustrated with respect to the software counterpart. In order to analyze the details of

the approximate computing, power consumption and computing time for generating

support vectors may be beneficial.

In [84], a FPGA-based design was generated using the ultrafast high level

synthesis (HLS) design methodology instead of classic hardware description language.

The design achieves a speedup of 36.98. However, linear kernels and decision boundary

conditions were implemented, but the support vectors were pre-computed. The details

related to the HLS inefficiencies can be highlighted in order to generate a optimized

design.

In [85], a parallel implementation of sequential minimal optimization for training

was proposed. In this paper, the authors utilize a hardware friendly kernel to train SVM

model. However, the hardware friendly kernels approach would be to improve the power

consumptions but may lead to approximate computing. Specifically, for a decomposition

approach, the accuracy depends on the numerical precision. Also, no details were found

in regards to the exponent computations, memory management and decision boundary

conditions.

In [94], a co-processor design was proposed based on two-level methodology

exploring the usage of design space techniques to produce an efficient accelerator by

addressing the HLS inefficiencies. Although, HW/SW co-design may not suitable for

23

embedded mobile applications, one of our objectives is to provide a dedicated and

independent hardware modules to achieve a higher speed up. Using a HW/SW co-design,

the paper illustrates a speedup gain of 78x, however, the power consumption would lead

to lower performance/W. The paper provides useful insights on the HLS inefficiencies,

which are useful to develop a more optimized hardware design to achieve a better latency

gain.

In [97], a reconfigurable FPGA-based architecture was proposed for various

machine learning algorithms such as Decision Trees, Support Vector Machines and

Artificial Neural Networks. In this case, the paper aims to provide one universal solution

for machine learning algorithm on hardware architecture. One universal solution seems a

reasonable approach and by adapting the hardware for different applications, but the

scalability to reconfigure might lead to increased place and route time with respect to the

size of the application domain. Specifically, as the dimensions of the data to process in a

machine learning increases, the choice of a specific machine learning solutions would be

a tedious process along with the mapping the design on to the FPGA. However, the paper

demonstrates a speedup gain of up to 66.71x, which illustrates the potential gain from a

FPGA-based design, which can further be improved with optimized hardware

architectures.

In [42], a FPGA-based architecture is proposed for training heterogeneous

linearly separable datasets. Regarding the scalability issues suitable for higher-dimension

and large-scale datasets are not addressed and based on the architecture provided, the

computational elements accomplish the linear kernel task and does not extend its

applicability to solve non-linear applications. It should be noted that the hardware support

24

utilizes PCIe for accessing the data; it might not be suitable for embedded applications to

utilize a PCIe due to limited hardware footprints. Therefore, utilizing one of the high-

speed communication protocols for the embedded platforms are efficient than large

physical connectors to access data.

A GPU-based design was proposed for data classification using Gilbert’s

algorithms to evaluate the kernel functions [45]. The paper presented brief details about

GPU and FPGA implementations, a brief internal architecture of the SVM training and

testing process. Using CUDA, the GPUs are treated as a co-processor serving the host

CPU. Based on the results, the speedup comparison of FPGA vs. GPU is linearly

proportional to the dimensionality of the data. As the number of dimensions increases,

the FPGA speedup increased linearly from 10 to 90x. Due to limited internal memory of

FPGAs the speedup starts to saturate and decline for larger scale data sets. Since, GPU

are high power consuming devices, power comparison for this approach would be highly

applicable. Nevertheless, the FPGA showed better performance compared to GPUs. Also,

in order to maximize the acceleration potential, GPUs need a host CPU to communicate,

in turn adding the additional hardware resources. Therefore, for our design approach, we

developed an efficient pre-fetching technique to overcome the issues mentioned above

and provided independent and dedicated hardware design.

In [46], a comparison for the SVM implementation on FPGA and GPU was

proposed; it did not detail the hardware implementation of the SVM. The paper provides

a brief idea of hardware implementation for the data segmentation application using

SVM. The paper provides results in terms of speedup and power consumption for FPGA

vs. GPU design. Based on the result analysis, FPGA outperforms GPU by a factor of 3.5

25

times and consume 17x less power than a GPU. This significant power consumption of

GPU is evident to choose power efficient embedded platforms for large-scale data

applications. The results suggest that the power consumption for GPU based design is

250W and 15W for FPGA. Although, GPUs has high parallel processing capabilities but

the cost and power constraints are a major threshold for large-scale data applications.

Another comparison study for GPU vs. FPGA was proposed in [47]. In this paper,

a speedup comparison was performed on different hardware at a wide price range. The

hardware 1 is the Tegra K1 GPU costing at around $200, hardware 2 is Zynq-7000 FPGA

at $400 and hardware 3 is the Tesla P100 HPC server costs over $8000. Based on the

different price points, FPGA performed ~10x better compared to the regular GPU

whereas, the P100 HPC server outperformed FPGA by ~3x. Considering the cost of these

devices, the speedup obtained is marginal. The paper did not detail the SVM

optimizations or power consumptions regarding these hardware implementations.

In [48], a parallel implementation of FPGA as coprocessor was proposed for

SVM. With this design, the speedup obtained was around 20x compared to CPU design

consuming 10W power. Although, the design utilize PCI and FPGA as a co-processor to

parallelize compute-intensive arithmetic operations, it is not suitable for mobile

embedded platforms, which has stringent area and power restrictions. Considering these

design constraints, our design is independent with less area and power suitable for mobile

platforms. In additions, PCI module is suitable for static environment as compared to

high speed AXI protocols. With the limited hardware footprints, our design is optimized

and efficient embedded applications.

26

An FPGA-based implementation for SVM was introduced in [29] for

telecommunication. In this case, only the SVM training phase was implemented on

hardware. Some parts of the training phase, such as kernel and Q matrices, were also

computed offline. In order for a data classifier to be efficiently utilized in real-world

applications, it is imperative to design an adaptable training and testing modules on

embedded platforms. Since the real-world is typically high-dimensional and large-scale

data, training offline suitable for various static applications. However, it is not applicable

for dynamic or mobile applications, in which the data access latency plays a major role.

In [30], a coprocessor was introduced only for the kernel matrix computation of

the SVM training. However, it is imperative to implement all the stages of both the

training and testing phases on hardware, especially for real-time machine learning

applications. Accelerating the kernel matrix computations is a part of the SVM classifier,

which may not be efficient for application such as small-scale linearly separable datasets.

Therefore, implementation of a generic SVM module including both training and testing

process seems pliable for real-world data applications.

In [31], a scalable FPGA-based architecture was proposed for the SVM algorithm.

Although the proposed hardware classifier achieved a substantial speedup compared to its

software counterpart, the design did not include techniques: to solve the constraint

quadratic formulation, and to process and analyze the data in real-time.

An FPGA-based accelerator was proposed for a different SVM algorithm known

as least square SVM [49]. In this case, the SVM training was processed online utilizing a

run-time reconfiguration framework and parallel processing architecture. This improved

the speedup but with the penalty in area, which is not feasible especially for small

27

footprint embedded devices. Also, details regarding the stream of data to be processed for

real-time classification needs to be addressed with regards to memory and

communication protocols.

From this investigation, it is evident that most of the existing works proposed

hardware architectures either for testing or for training, but not for both. Furthermore,

most of these proposed hardware architectures were not generic or parameterized. Also,

most of these architectures were not designed with embedded devices in mind. None of

these works proposed system-level architectures and associated techniques to facilitate

real-time processing of machine learning applications. Consequently, the existing works

did not report the corresponding system-level area, and did not consider the associated

memory access latency while reporting timing/speedup. As a result, we could not make

any direct performance comparisons with the existing works on FPGA-based hardware

architectures in the published literature. In summary, from this investigation, and to the

best of our knowledge, we could not find any similar work as ours, in the published

literature, that provides FPGA-based hardware accelerators for CO-based SVM,

especially on embedded devices, nor could we find any similar work that proposed

system-level architectures, which is imperative for the machine learning applications in

real-world scenarios.

Depending upon different approaches considered by many peers the following

table below summarizes the existing research work over the past decade. Each article

addresses specific problems to enhance the efficiency and adaptability of the machine

learning algorithms for large-scale data applications. We have extracted the specific and

28

related details corresponding to hardware computing platforms to implement data

classifier applications.

All the implementations addresses hardware implementation of the SVM

classifier and to accelerate certain arithmetic computations, however designing a generic

and independent classifier requires addressing the main constraints such as memory

access latency, floating-point IPs, exponential implementation, dynamic algorithms

suitable for real-world data sets irrespective of linearly or non-linearly separable datasets,

kernels utilizations. Maintaining a specific DSP and logic resources ration might provide

guidelines in regards to accelerate the computations within area constraints however, the

real-time data processing must be taken into consideration for developing efficient

embedded hardware architectures.

Unlike the existing hardware architectures for modules and sub-modules of SVM

implementation discussed above, our FPGA-based hardware architectures are generic,

parameterized, and scalable independent IP modules for both training and testing

purposes. Our hardware designs are design for homogeneous and heterogeneous data

sets, linearly and non-linearly separable data sets without changing the internal hardware

architectures or affecting the occupied area of the chip. Based on the previous analysis on

the existing architecture, our designs are optimized to consume significantly less power

for the entire SVM process as opposed to partial implementation specified above. By

providing generic and individual IPs for each stage, IPs can be used for any embedded

applications that employ either entire SVM modules or any specific individual modules.

As mentioned in the literature review in section 2, the existing research work does

not address major issues and challenges for designing a generic, independent data

29

classifier. Therefore, we identify the constraints related to embedded platforms and

address them accordingly:

• Provide a system-level architecture for data classifier

• an efficient pre-fetching techniques to reduce memory access latencies

• implementation of Taylor series expansion to address IP modules limitations

• generic embedded hardware design for various types of datasets (homogeneous and

heterogeneous, linearly separable and non-linearly separable)

• efficient decomposition implementation for convex optimization along with the

boundary decision condition

• implement adaptable and independent training and testing modules for real-time

applications

• accelerate both training and testing using parallel systolic array implementation

• Compare speedup performance with respect to CPU design, software counterparts as

well as hardware design with/without systolic array instances.

Why Embedded hardware?

Embedded platforms have certain advantages compared to general-purpose processor

such as:

• Low cost, less area and power requirements

• Faster real-time computations, better performance

• Customizable, reprogrammable.

• designed to perform a specific task independent or part of larger system

• High throughput to numerous data-intensive applications with critical time

constraints

30

Why FPGA?

• Large number of LUTs, DSP blocks and a hierarchy of different memory sizes,

providing high level of design flexibility

• Runtime re-configurability allows the design to be scalable and adaptive to different

types of input data

• FPGAs provide numerous advantages such as high parallelization, better

performance, efficient prototyping capabilities, lower power etc.

Table 1.01. Literature review

Ref Contribution Platforms Resource

utilization

Acc

(%)

Speedup Pow

(W)

HW_

v1

Kernels,
Decomposition,
boundary decision,
memory
management

Xilinx Virtex-6
ML605

Slices-5216,
(LUTs-12965,
reg-12784),
DSP-110,
BRAM-118

100 CPU-
3.1x,
Software-
74x

2.96

HW_

v2

Systolic Array Xilinx Virtex-6
ML605

Slices-8390,
DSP-236,
BRAM-118

100 SW-107x 3.42

 [50] GPUs, efficient
memory
management

Intel i7,i9
GeForce
RTX2070, GTX
1080Ti

N/A 100 GPU1 vs.
GPU2:
140x

N/A

 [35] HW design
generated using
sys gen

Xilinx-Virtex-6 Slices-25790,
DSP-450

100 CPU-
319x,

N/A

 [51] Testing Xilinx Virtex
Ultrascale+
XCVU9P

N/A N/
A

N/A N/A

 [52] Hyper-parameter,
grid search

Intel i7-6700K &
NVIDIA
GTX1080Ti

N/A 100 N/A N/A

 [4] Kernel & decision
function

Intel i7, Nvidia
GeForce GTX
Titan X, Xilinx
Virtex-6/7

 LUT-12072,
DSP-320

94 CPU-
2220x,
GPU-
0.373x

3.2,5
.4,
1601

 [36] Approximate
computing, kernel

Xilinx Zynq-7
ZC706

N/A 96 SW -15x N/A

1 CPU, GPU and FPGA power consumption

31

& testing

 [37] HW/SW SoC,
Linear kernel &
Testing

Xilinx Zynq-
7000 platform

3% resource
util., Slices-
13,830

97 SW -
36.98x

2.65

 [38] Training-SMO,
shift-add,
simulation

Xilinx Virtex-6
XC6VLX240T-
1FF1156

Logic cells-
106008
(70.3%)

N/
A

SW-
1312x

N/A

 [53] Incremental/Decre
ment SVM
(IDSVM)

FPGA,
MATLAB

N/A N/
A

SW-70% N/A

 [54] Cascade SVM,
kernels & testing

Xilinx Spartan-6
XC6SLX150T

LUTs-45758 84 SW-
34fps

10.4

 [55] Pre-computation-
kernel

Intel Xeon E5-
2640v4, Nvidia
Tesla P100

N/A N/
A

GPU vs.
CPU-
437x

N/A

 [56] Testing HW/SW co-
design Xilinx
Zynq ZC702

2.7% resource
utilization

97 SW-37x,
GPU-7x

1.69

 [57] Testing, sys gen,
Matlab-HW design

Xilinx Virtex-5 N/A N/
A

SW-60x
Matlab
simu.

5%
less

[58] Hyper-parameters
using Bio-inspired
opti.

Altera Cyclone
IV
EP4CE115F29C
7

Logic
Elements-
44.7%, DSP-
70

N/
A

SW-
3.67x

N/A

 [59] Testing Xilinx Virtex-5 Sl. reg, LUT,
DSP-
11325,11467,
12

97 N/A N/A

 [60] Two-level
hierarchy for
global & local
matrix-matrix
computation

Intel i7, NVIDIA
GTX,1080,
GTX980 Ti,
GTX Titan black

GPU-61.65-
96.98% of
2560,2816,288
0 cores

100 GPU vs.
GPU
speedup-
12x

N/A

 [39] Acceleration for
efficient SVM HW
co-proc.

Co-processor.
Arm pro, Xilinx
Zynq SoC

N/A 98 SW-78x. N/A

 [47] Training-offline
using LIBSVM-
3.2

GPU, FPGA N/A 97 GPU vs.
FPGA-
9.6x

N/A

 [61] Hybrid Zynq using
HLS

HW/SW co-
design, Xilinx
Zynq

N/A N/
A

N/A 1.73

 [62] Multiple SVMs,
partial out.
combined &

Multiple proc. N/A 100 CPU-35x N/A

32

filtered

 [40] Reconfig. arch for
DT, SVM, ANN

FPGA N/A N/
A

SW-
66.71x

N/A

 [63] IPM for based on
Incomplete
Cholesky
Factorization

CPU-GPU
cluster. Intel i7,
NVIDIA GTX
480

N/A 98 CPU vs.
GPU-
36.68x

N/A

 [64] Training for cloud Cloud N/A 100 N/A N/A

 [65] Efficient reconfig. FPGA N/A N/
A

Reconfig.
-8x

N/A

 [66] Scaling to 12 cores Xeon E5, Phi 7
110P, Tesla
M2090,GK110

N/A 100 84x2,
429x3

6394

 [67] Cascade SVM,
hybrid arch,
boosted by NN

Xilinx Spartan-6
XC6SLX150T

LUT-35532,
DSP-59

80 40fps 9.9

 [68] kernel, hybrid
working set in co-
processor

Co-processor.
Xilinx Virtex-7
VC707

N/A N/
A

CPU-25x N/A

 [69] Multithread
parallel framework
for GPU

GPU. NVIDIA
GeForce GTS
250

N/A 98 CPU vs.
GPU -
15.21x

N/A

 [43] Training in
Matlab, testing in
HW

Co-processor.
Matlab

N/A N/
A

N/A 2.05

 [70] Testing, Mac units,
synthetic dataset

FPGA N/A 99 N/A N/A

 [71] Multiplier-less,
kernel-systolic
array

FPGA N/A N/
A

N/A N/A

 [72] Testing XilinxV5 &
Spartan-3E

1-3% slice
registers

100 N/A N/A

 [73] Convex quadratic
prog. IPM

NVIDIA GTX-
480

N/A 97 CPU vs.
GPU-3x

N/A

 [74] IPM with ICF,
Sherman Morrison
Woodbury

Intel Xeon
E5620 with
4xNVidia Tesla
C2050

N/A 100 8x, 40x5 N/A

 [46] Testing, Gaussian
kernel, co-design

GPU, FPGA N/A N/
A

CPU-
42x.
GPU-(-

15,
2506

2 Speedup of MIC and Ivy bridge
3 Speedup in terms of GPUs and CPU
4 (Gisette - 59W, Epsilon-104W, Dna-137W) + 502W system power
5 GPU 8x the LIBSVM. P-PDIPM on GPU is 40x than S-PDIPM on CPU
6 15W for FPGA and 250W for GPU

33

3.5x)

 [75] Cascade SVM, hw
reduction util.

Xilinx Virtex-5 43% less
hardware
resources

98 70fps and
5x

4.1

 [76] Online detection,
testing, pre-
computed SV

Xeon X5650,
Xilinx Virtex-5
XC5VTX240

Occupied
slices-32,679 +
acc. cards

98 10Gbps N/A

 [77] Posterior
probability for
testing, simulation

FPGA. Xilinx
Virtex-5

N/A 97 N/A N/A

 [78] Kernels NVIDIA-
8800GTS,
NVIDIA GTS-
250

N/A N/
A

CPU-9x N/A

 [79] Simulation,
training offline,
SVs stored

FPGA-
simulation.
Xilinx Virtex-4
XC4VSX35

~200MHz,
Slices (lin,
non-lin):849-
7261

98 SW-407x N/A

 [80] SVs in memory
banks, kernels,
testing

FPGA. Xilinx
Virtex-5 ML505

Slice LUTs:
57296

78 122fps N/A

 [42] Training-linearly
sep

FPGA N/A N/
A

N/A N/A

 [81] HW-SVR & SVM.
Training-Matlab

Altera EP2C20
Cyclone II

Logic
elements-75%

N/
A

N/A N/A

 [41] SVM – Testing FPGA N/A N/
A

CPU-3x
GPU-7x

N/A

 [82] PC, frame grabber
board + FPGA +
GPU

Multi-platform LUT-28616 for
FPGA

95 N/A N/A

 [83] Sparse matrix
computations for ||
SVM

NVIDIA
GeForce
GTX470

N/A N/
A

GPU vs.
CPU-
133.8x

N/A

 [84] SMO, avoided
numerical
instability issues
exists in traditional
algorithms

Xilinx Virtex-4
XC4VLX100

~30% slices,
DSP48-90%

N/
A

Speedup
relative
ECU
units-20x

N/A

 [45] Gilbert's
Algorithm

GPU, FPGA N/A N/
A

55x N/A

 [48] Co-design Co-processor N/A N/
A

CPU-18-
21x

10

 [85] Systolic Chain of
PEs. Pre-computed
SVs.

FPGA. Xilinx
Virtex-5

N/A 88 ~33fps N/A

34

 [86] Two schemes-
Logic elements &
soft-core proc

Altera Cyclone
II

Logic
elements-
116750

100 Software-
41x

N/A

 [44] Training non-lin FPGA N/A N/
A

CPU-3x N/A

 [87] Meta-heuristics,
Variable
neighborhood
search

Embedded +
FPGA + DSP +
Intel Xeon 5320

N/A N/
A

N/A N/A

 [88] Feed-forward
phase

FPGA N/A 5.97 N/A N/A

2.5 Chapter Summary

In this chapter, we discussed about the various means of hardware support for

application specific operations. We provided framework details of machine learning

techniques and applications. We elaborated on the mathematical procedure to construct a

classification algorithm and optimization techniques. Existing work related to hardware

support for the machine learning applications are presented. In the next chapter, we

present the details about the architecture and implementation details for developing these

complex algorithms on the embedded systems platforms.

7 Error rate

35

CHAPTER 3

OPTIMIZED HARDWARE ARCHITECTURE FOR SVM CLASSIFIER

Our main objective for this research work is to provide efficient and optimized

hardware architecture to accelerate the machine learning algorithm, specifically support

vector machines. In the section, we discuss in detail about the design implementation

starting with system-level architecture, pre-fetching modules to reduce the memory

access time, custom IPs for classifications and performance evaluation.

3.1 Background: Convex Optimization and Support Vector Machines

In the following subsections, we discuss the mathematical representation to build

an optimal hyper-plane, formulate the objective function to optimize the SVM algorithms

and creating a feasible model suitable for large-scale datasets by incorporating the

decomposition techniques.

3.1.1 Optimal Hyper-Plane

The SVM is a commonly used classification technique found in many different

fields, such as digital channel equalization in signal processing, and protein structure

prediction and cancer detection in medical diagnosis [26]. In this case, the concept is to

formulate a hyper-plane with maximum margin width to distinguish between two classes

[15], [31]. It is a supervised classification method [15], which often involves a training

set of {xi, yi}, where x is the set of input data samples/vectors, i: total number of samples

and y is the output label of the binary classifier, used for identifying the class of the data

sample. These are represented in equation (1).

� = ���, ��, �� … �
�∀
, �
 ∈ ℜ�

 �
 ∈ �−1, +1�, (1)

36

Each input vector x, constitutes different features of a dataset represented as,

xi={xi1,xi2,xi3,…,xin}, where, n is the number of features. The formula for the hyper-plane

[15] [24] [28] [25], and the decision function to determine the class are represented by the

equations (2) and (3), respectively.

 �
 ∈ �x��, x��, … , x���, where, n is the number of features

 y��w. x + b� − 1 ≥ 0 where, w: weight vector, b: bias value (2)

 f�x� = sgn�w. x + b� (3)

where, w is the weight vector, and b is the bias value.

The margin width of a hyper-plane can be obtained by projecting a unit normal

vector ŵ to the optimal hyper-plane, as in equation (4) [15], [24].

 margin width = �||,|| (4)

The SVM can typically be extended to a multi-class classification [28], in which

the output label is represented as,y� ∈ �y�, y�, y�, … , y-�, where, m is the total number of

classes. As stated in [24], the multi-class training process can be performed using one-to-

rest approach. With this approach, m different classes are trained independently, where

one set of the input vectors forms the positive class, and the remaining input vectors form

the negative class, in the hyper-plane. The classification process can further be carried

out, similar to the binary classification.

3.1.2 Non-Linear Optimization

In order to improve the overall accuracy of the classification tasks, the margin

width of the hyper-plane can be maximized using a non-linear optimization method [27],

[28], [25]. With these methods, an objective function subjected to boundary constraints of

37

a hyper-plane can be derived from the equations (2) and (4) [15], [28]. The formula for

the objective function is presented in equation (5), as follows:

 y� ∈ �y�, y�, y�, . . . y.�, where, l: total number of classes

 max, �margin� = max, � �||,||�

Objective function: min, �� �|w�|�

subject to y��w. x + b� − 1 ≥ 0 ∀i (5)

Employing the duality theory and the Lagrange multipliers [24], [23], [25], we

can efficiently calculate the local maxima or the local minima of the objective function in

equation (5) [27], [24]. From equation (5), the constrained optimization problem can be

formulated similar to the non-linear programming/optimization [27], [25]. This

constrained optimization problem can be presented as the primal and dual form as in

equations (6) and (8) [24].

Primal form, min L�w, b� = �� w� − ∑ α��y��w. x� + b� − 1�-�2� (6)

In order to obtain the minimum from equation (6), let’s consider the point, where

the gradient is zero [24]. The minimum value for the primal form can be obtained by

applying the partial derivatives with respect to w and b to derive the following formulae

in equation (7).

3 α�y� = 0-
�2�

 w = ∑ α�y�x�-�2� (7)

Duality theory is useful for the constrained optimization problem, since it

provides a convenient way to improve the data classification by utilizing the non-linear

optimization approach [27], [25].

38

Dual form, max W�α� = ∑ α�-�2� − �� ∑ α�α5y�y5. K�x�, x5�-�,52� (8)

The primal form (in equation (6)) can be solved using several methods [27],

including Newton method, least squares algorithms, stochastic sub-gradient method,

cutting plan algorithms, and interior point method. The dual form (in equation (8)) can

also be solved using the decomposition methods and interior point method [27] [89] [90]

[91]. The dual form has the advantage of utilizing mathematical kernels. Mathematical

kernels are a set of algebraic transformation functions, which provides similarity

information between data features [92], [93]. To use the mathematical kernels, the dual

form depends on the pair of samples, such as K (xi. xj) as in equation (8). Utilizing the

mathematical kernels, the SVM classification can be extended to non-linearly separable

datasets [24] [94] [95] [93].

After obtaining the local minima from equations (6) and (8), the optimal value for

α is evaluated to identify the support vectors [27], [24], [25]. The support vectors are the

input vectors closest to the hyper-plane, and have an α value greater than zero (α > 0)

[27]. The dimensional co-ordinates of the support vectors determine the orientation of the

hyper-plane. Any other vector may result in a closer to zero α value, which indicates that

the data points have less impact on the orientation of the hyper-plane, and are also

situated further away from the hyper-plane [24].

3.1.3 Convex Optimization

Typically for large-scale applications, due to high volume of data, the constrained

optimization problem presented in equation (8) must converge to the minimum value, in

order to find a best fit for constructing an optimal hyper-plane [27] [96] [97].

39

As stated in [24], for convex optimization, all local minima are considered as

global minimum. In this case, due to the presence of noise in some datasets, the soft

margin parameters such as l-norm error parameter (penalty parameter, C and slack

variable (ξ)) must be considered for a better generalization of the primal form [24] [27].

Since the aforementioned non-linear optimization/programming consists of an equality

constraint, the dual form (in equation (8)) can be reduced to the general form of convex

optimization problem by integrating soft margin parameters [23]. Hence, the overall

objective function in equation (8) can be modified to the following equation (9).

Dual form, objective function: min7 W�α� = �� ∑ α�Pα5-�,52� − ∑ q:α�-�2�
subject to 0 ≤ α� ≤ C

 ∑ α�y� = 0-�2� (9)

The equation (9) is similar to the general form of convex optimization, as stated in

[23], with the equality constraint and the box constraint, and can be written as equation

(10) below.

Dual form, objective function: min= f�x� = min= �� x:Px − q:x

subject to 0 ≤ Gx� ≤ h

 A. x = b (10)

In convex optimization, the above objective function (in equations (9) and (10))

should converge in such a way that it satisfies the Hessian matrix condition [27] [25],

which state that the contour of the convex plane should be continuously differentiable as

in equation (11). Then, the optimal solution can be found where the gradient value is zero

[24] [25].

40

@A@= ∗ @A@= ≥ 0 (11)

In equation (10), the P matrix is symmetric and positive semi-definite; and both

the objective function and the constraint function are convex [23] [25] [98]. Especially,

for large-scale applications, the resultant matrices are dense, thus, difficult to solve.

Therefore, the decomposition methods are often used to break down the convex

optimization process by finding the two working sets [95] [99], as shown in equation

(12). Proper selection of the “working sets” impacts the performance of the convex

optimization algorithm and its convergence properties [27] [93] [25]. In this case, the

process of finding the two working sets to determine the support vectors in the training

set is a compute-intensive and an iterative process. Hence, by providing customized and

optimized FPGA-based accelerators, we can dramatically enhance the speed-performance

of these compute-intensive applications (or tasks).

The decomposition methods, such as sequential minimal optimization, are

employed to solve the non-linear optimization applications/tasks by sequentially selecting

the working set based on the proximal point with respect to the objective function (in

equation (9)) [25]. Considering the various methods employed to solve the non-linear

optimization, the Sequential Minimal Optimization (SMO) is the most popular, due to its

ability to handle large-scale datasets efficiently and effectively [89] [100] [101]. In this

case, at each iteration, the input vector x (in equation (9)) is divided into two working sets

as ��C, �̅C�, where, k is the current iteration count, xk is the current input vector, and �̅C is

the previous input vector. Based on the specified starting point, the objective function (in

equation (9)) is solved to converge to a minimum value [25]. More information, about the

41

equation (9), selection of the working sets, stopping criteria, and other methods to solve

the non-linear optimization/programming, can be found in [23] [27].

For convex optimization (from equation (9)), a feasible point of (0, 0) is initially

selected for the working sets, which is the first input data sample in equation (1). Then

based on the direction of the gradient descent, the next working set is selected [23] [96].

Selecting the feasible point and the working set can impact the total time required to

solve the convex quadratic optimization. As stated in [27], the solution for the convex

optimization (in equation (9)) is found, by selecting the suitable working set, which

satisfy the following criteria in equation (12).

 max�∈E�7∗� F− ∇H�7∗�AI J ≤ min5∈K�7∗� L− ∇H�7∗�AM N (12)

In equation (12), the R (α) and S (α) is the index sets used to characterize the

descent direction, and allow to state the optimality conditions. Based on the descent

direction, the objective function (in equation (9)) converges to the minimum α value,

which is used to determine the orientation of the separating hyper-plane [27] [24]. In this

case, constructing the hyper-plane establishes an explicit distinction between the different

classes of the data.

3.2 Design Approach and Development Platform

In our designs, both hardware and software versions of various operations/tasks

are implemented using hierarchical platform-based and modular-based design approaches

to facilitate component reuse at different levels of abstractions. As illustrated in Figure

3.1, at the highest hierarchical level, our CO-based SVM algorithm comprises the

training and testing tasks. During the training process, based on equation (9), the

objective function is formulated to define the hyper-plane, to select a suitable

42

mathematical kernel, and to obtain the optimal solution. During the testing process, the

decision function of the classifier is computed using the sign verification operation (in

equation (3)). The aforementioned intermediate operations to process the training and

testing tasks involve vector addition/multiplication, matrix computations, and various

other arithmetic operations, which are placed at the lowest level of our platform-based

design hierarchy.

During our early design phase, we investigate and utilize the integer units and also

the double-precision floating-point units as our FPGA-based IPs. From these

experiments, the integer-based designs exhibit results with quite low accuracy, whereas

the double-precision floating-point designs occupy larger area on chip. These facts

illustrate that the former might not be suitable for real-time applications, which typically

require results with high accuracy; and the latter is not necessarily suitable for the

embedded devices with the stringent area requirements. Furthermore, for the high

dimensional input vectors, the optimal solution for α could not be reached (in equation

(9)), utilizing the double-precision floating-point units, since these units not only create

large on-chip logic resources requirements but also high latency requirements. Hence, we

strive to approximate the results for the double-precision floating-point units, without

compromising the accuracy of the results. As a result, we utilize the single-precision

floating-point units, which create a tradeoff among the accuracy and area, and power. In

this case, most of the lower-level operators are designed and implemented using the

single-precision floating-point units in the Xilinx IP core library.

43

Figure 3.1: Hierarchical and modular-based design approach. Our design includes a

hierarchy of abstraction levels, where higher-level operations utilize lower-level

functional modules

3.2.1 Experimental Platform and Benchmark Datasets

All our hardware and software experiments are performed on the ML605 FPGA

[102] [103] [104] development platform [105], which utilizes a Xilinx Virtex-6

XC6VLX240T-FFH1156 device. This development platform consists of large on-chip

logic resources (37680 slices), 748 DSP48E1 slices, 512MB DDR3-SDRAM (Double-

Data-Rate Synchronous Dynamic Random Access Memory), and 2MB on-chip BRAM

(Block Random Access Memory) [106]. It should be noted that our hardware

architectures for CO-based SVM were created in such a way to be generic,

parameterized, and scalable; hence, without changing the internal architectures, our

hardware designs can be executed on different embedded platforms, including the

platforms with recent FPGAs such as Virtex-7 chips.

44

The vector computations are designed in such a way by integrating the available

DSP48E1 slices to enhance the speed-performance. The large 512MB off-chip memory

resources are useful to store large datasets, typically found in many real-time machine

learning applications.

All our customized hardware modules are designed in mixed VHDL and Verilog

[107], using Xilinx ISE 14.7 and XPS 14.7 design tools [108] [109] [110] [111]. They are

executed on the aforementioned Virtex-6 FPGA running at 100MHz (in real-time) to

verify their correctness and performance. The results and the functionalities of the

hardware designs are further verified using the Modelsim SE, and Xilinx ISim tools [112]

[113] [114] [115]. All our software modules are written in C++ and executed on the 32-

bit RISC Micro-Blaze soft processor [116] running at 100MHz on the same FPGA.

Xilinx XPS 14.7 and SDK 14.7 tools are used to design and verify the software modules

[117] [118] [119]. Unlike the hard processors, the Micro-Blaze soft processor must be

synthesized and mapped on to the configurable logic blocks of the FPGA. The

performance-gain or the speedup is evaluated using the baseline software execution time

over the improved hardware execution time. The hardware and software execution times

are obtained from the AXI Timer [120].

The overall speedup is evaluated and reported using two different benchmark

datasets obtained from the UCI machine learning repository [121]: Wisconsin breast

cancer diagnostic dataset [21] and Ionosphere dataset for machine learning [122]. The

benchmark datasets used to evaluate our proposed designs have two classes to account

for binary classification task. The Cancer benchmark dataset comprises two classes,

known as “Malignant” or “Benign”; and the Ionosphere benchmark dataset also consists

45

of two classes known as “Good” or “Bad”. The Cancer datasets consist of 569 samples

(or vectors), each having 30 features (or attributes) to describe the characteristics of the

cancer cell nuclei. These cancer cells are obtained using a fine needle aspirate and the

main features are obtained from a digitized image. The Ionosphere dataset comprises a

set of phased-array data obtained from 16 high-frequency radars. It has 351 samples, each

having 34 features to characterize the complex electromagnetic signals. The total sizes of

these two datasets are 68,280 bytes and 47,736 bytes, respectively.

3.3 Our Proposed System-Level Architecture

Figure 3.2 demonstrates the system-level architecture for our embedded hardware

and software designs. Since 2MB on-chip BRAM, on Virtex-6 FPGA on ML605 board

[123] [124] [125], is not sufficient to store the large amount of data commonly found in

many machine learning applications, we integrate the 512MB DDR3-SDRAM external

memory into the system. In this case, DDR3-SDRAM and the DDR3-SDRAM memory

controller run at 200MHz, whereas the rest of the system is running at 100MHz. As

illustrated in Figure 3.2, we utilize the AXI (Advanced Extensible Interface) bus [126] to

facilitate the communication among the peripherals at the system-level.

During the initial software design phase, we configure the Micro-Blaze processor

to have the maximum available cache memory of 128KB. However, this 128KB of cache

memory is not sufficient to execute our software code and to process the data, since our

code starts hanging. Hence, we vary the heap and stack size, and also increase the

addressing of the cache memory to accommodate 256KB. This indeed resolves our cache

memory constraint issue, although the Xilinx XPS tool still reports the size of the cache

memory as 128KB.

46

Figure 3.2: Our Proposed System-Level Architecture.

As shown in Figure 3.2, our user-defined/designed custom Intellectual Property

(IP) communicates with the DDR3-SDRAM and the Micro-Blaze using the AXI bus

through the AXI Intellectual Property Interface (IPIF) module, using a set of ports called

the Intellectual Property Interconnects (IPIC) [126]. Typically, after the Micro-Blaze

processor sends a start signal to our user-defined IP via the AXI4-lite bus and the AXI

IPIF interface, our user-defined IP starts processing, directly reads/writes data/results

from/to the DDR3-SDRAM via the AXI bus and the AXI Master Burst Controller, and

sends a finish signal to the Micro-Blaze processor when the execution is completed.

For both our hardware and software designs, prior to computing the CO-based

SVM algorithm, the original benchmark datasets are transferred from a host computer

(i.e., desktop computer) to the ML605 development platform via the RS232 interface, and

stored in the DDR3-SDRAM. In this work, the execution times (for both hardware and

AXI Timer,
Timer Interrupt

External interface
RS232_UART

Micro-blaze
32-bit processor

MicroBlaze
data/instruction
BRAM interface

ctrl

128kB BRAM

User-defined
custom IP

AXI IPIF memory
interface

DDR3-
SDRAM

Local
memory

bus

 AXI4_Lite Interconnect

 AXI4 Interconnect

AXI Master Burst
Controller

AXI bus

47

software designs), reported in Section V, do not include this initial data transfer time via

the RS232 interface. For our hardware design, we provide AXI4 burst/stream high-

throughput interface (via the AXI bus and the AXI Master Burst Controller) for

streaming the data from the DDR3-SDRAM to our user-defined IP for real-time

processing. One of our design goals is to create our system-level architecture in such a

way to train and classify a continuous stream of data using the AXI4 burst/stream

interface. In a real-world application scenario, this feature enables proving a direct

connection between our user-defined hardware IP and a camera, (for instance, in an

autonomous car), in order to process the input data on-the-fly. This enables our hardware

IP to perform the training and classification processes dynamically to cater to the ever-

changing environment. By streaming the data and processing the data directly, reduces

the amount of memory storage required for the embedded designs.

3.3.1 Our Proposed Pre-fetching Techniques and Top-level Architecture

Classification techniques, such as CO-based SVM, for machine learning

applications, often involves processing large volume of data. This enormous amount of

data must be stored in the external memory and transferred to the embedded platform for

processing, since the on-chip BRAM is not sufficient to hold this large volume of data.

This in turn leads to significant memory access latency, thus impacting the overall

speedup of the hardware accelerators. From our previous work [127], [128], it was

observed that a substantial amount of time was spent on accessing DDR3-SDRAM off-

chip memory, which was a major performance bottleneck. Hence, it is imperative to

address the memory access latency in our proposed embedded hardware

architectures/accelerators.

48

In order to facilitate this endeavor, we create and integrate several design

techniques to reduce the memory access latency as well as to enhance the speedup of our

proposed embedded hardware architectures/accelerators. One of these techniques is the

burst transfer. In this case, our user-defined hardware IP is designed to be enhanced with

stream-in (or burst) data from the DDR3-SDRAM.

From Section III.b, as in Figure 2, the AXI4-lite and AXI4 interfaces act as glue

logic for the whole system, including the MicroBlaze processor, internal peripherals, and

the user-defined hardware IP. AXI4-lite is a single transaction memory-mapped

bidirectional interface. In our embedded hardware accelerator, the MicroBlaze

sends/receives certain control signals, and also monitors the status of the user-defined IP

via the AXI4-lite bus and via the slave registers (or software accessible registers). These

32-bit slave registers are also used to send the SVM specifications, such as kernel type,

dimensions of the input vectors, penalty/slack variables, to the user-defined IP, along

with the initial memory address of the DDR3-SDRAM to access the datasets.

In addition to the AXI4-lite, the user-defined IP reads/writes data/results from/to

the DDR3-SDRAM via the AXI4 bus and the AXI Master Burst Controller. AXI4 master

burst is a high-performance memory mapped interface capable of transferring burst size

of up to 256 data beats, which are compatible with 16, 32, 64, and 128 data width with a

single address transaction phase. With this data width, we can transfer up to 1MB (2n-1

bytes) per cycle on IPIC command interface. By incorporating the AXI4 master burst

capabilities (using the AXI Master Burst Controller), we dramatically reduce the memory

access time for the SVM training and the SVM testing processes.

49

Figure 3.3: Pre-fetching Technique.

Apart from incorporating the AXI master burst, we create and integrate a novel

and unique pre-fetching techniques to our used-defined hardware IP to further reduce the

memory access latency. Our proposed pre-fetching technique and our proposed top-level

architecture for the user-defined IP is illustrated in Figure 3. In this case, during the pre-

fetching mode, our User Logic module (in Figure 3) determines the total number of bytes

to be fetched utilizing the aforementioned SVM specifications provided by the

MicroBlaze via the slave registers. Next, the address generator and the AXI Master Burst

Controller configure the control signals of the IPIC with a suitable data width, a burst

length, and a number of beats per cycle. Then, the AXI Master Burst Controller sends the

aforementioned details about the data, as well as the “master read request” signal to the

AXI interconnect core. Once the AXI master receives the “read request

acknowledgment” signal from the AXI interconnect core, the user-defined IP can start

AXI Slave
IPIF controller

AXI Interconnect

AXI Master Burst
Controller

Rd
Addr

Rd
Data

Wr
Addr

Wr
Data

IPIC

User IP

Slave
Registers

Address
Generator

BRAM

User logic

Mathematical
Kernels

Convex
Solver

Tester

SVM modules

50

receiving the data from the DDR3-SDRAM, and store the data in the BRAM. Then the

user logic can start the training process. In this case, the address generator is essential to

index the correct values for matrix computations. After completing the training process,

the AXI Master Burst Controller is designed to automatically setup for the write

operation, in order to store the weight vectors and the bias values in the DDR3-SDRAM,

for subsequent computations/analysis.

Our proposed pre-fetching technique is illustrated in Figure 3.3. During the pre-

fetching mode, our user logic module (in Figure 3.3) determines the total number of bytes

to be fetched utilizing the aforementioned SVM specifications provided by the Micro-

Blaze via the slave registers. Next, the address generator and the AXI master burst

controller configure the control signals of the IPIC with a suitable data width, a burst

length, and a number of beats per cycle. Then, the AXI master burst controller sends the

aforementioned details about the data, as well as the “master read request” signal to the

AXI interconnect core. Once the AXI master receives the “read request

acknowledgment” signal from the AXI interconnect core, the user IP can start receiving

the data from the DDR3-SDRAM, can store the data in the BRAM [129]. Then the user

logic can start the training process. In this case, the address generator is essential to index

the correct values for matrix computations. After completing the training process, the

AXI master burst controller is designed to automatically setup for the write operation, in

order to store the weight vectors and the bias values in the DDR3-SDRAM, for

subsequent computations/analysis.

Most of the existing techniques/algorithms for machine learning, including SVM,

are typically designed in high-level programming languages such as python, and are

51

executed on general-purpose computers such as desktops and servers. These processor-

based (software-only) algorithms, in their current form, cannot be executed directly on

the embedded platforms/devices, since these devices have numerous constraints including

stringent area and power, limited memory, increased speedup, and reduced cost and time-

to-market requirements. Furthermore, today’s machine learning techniques/algorithms

are becoming more compute and data intensive, requiring more processing power. For

instance, the processing time for the training would increase exponentially with the

number of input data samples. Also, for smart and autonomous systems, the data

processing and analysis must be done in real-time, in order to make split-second

decisions.

Consequently, in order to satisfy the constraints associated with the embedded

devices as well as the requirements of the machine learning applications, it is imperative

to incorporate some applications-specific (or customized) hardware into embedded

systems designs [130]. In this regard, Field Programmable Gate Array (FPGA)-based

hardware is one of the most promising avenues to deliver machine learning applications

on highly constrained embedded platforms [131], not only because FPGAs provides

higher level of flexibility than ASICs (application-specific-integrated-circuits) and

higher performance than software running on processor, but also due to its many

attractive traits including post-fabrication reprogram ability, dynamic partial

reconfiguration capabilities, and reduced time-to-market.

52

3.4 Embedded Architectures for Convex Optimization-Based SVM

In this section, we introduce novel, unique, and efficient embedded architectures

(both hardware and software) for the convex optimization-based (CO-based) support

vector machine (SVM) classification algorithm.

3.4.1 Embedded Software Design

Although our main focus of this chapter is to introduce embedded hardware

architectures/accelerators for convex optimization (CO)-based SVM algorithm, we also

create embedded software architectures for CO-based SVM mainly to evaluate our

proposed embedded hardware designs. Our embedded software for CO-based SVM is

designed and developed on MicroBlaze soft processor on the same development

platform.

Prior to our embedded software designs, we design and develop the software for

our CO-based SVM algorithm in C++ using the Microsoft Visual Studio development

tools. This software design is executed on a desktop computer with Intel i7 processor

running at 2.3GHz. Our results are compared and verified with the results from the open-

source python code obtained from [132]. Both the C++ and python results are also used

to verify our results from our embedded hardware and software architectures.

In order to cater to the resource constraint nature of the embedded devices, we

significantly modify the aforementioned C++ software architecture, initially developed

for the desktop computers. In this case, we create the codes leaner and simpler, in such a

way to fit into the available program cache memory of the embedded microprocessor,

i.e., MicroBlaze, without impacting the internal structure/flow and the functionalities of

the overall CO-based SVM algorithm.

53

Figure 3.4: Software and Functional Flow for CO-Based SVM Algorithm

OP�
 , �Q R = S��
�. S��Q �

Algorithm:

Stage 1: Formulation stage

Input: Training set, m x n samples
m x 1 output labels
Specify C, ξ, γ, degree, kernel

Output: for i, j = 1, 2 ... m {
 Kernel matrix computation

 Compute P, q matrix from eq. 8
 P = K [y[i] * y[j]]

 q = [1, 1 ... 1].T
subjected to constraints A, b, G, h
 A = [y]1*m , bconst = 0
 G = [1,..]i, h = [C]}

Stage 2: Convex optimization and decomposition

Input: Set 2 working set, initial a feasible point (0, 0)
α = 0, Grad, Gradset = 0
Maximum iterations = 1000
Threshold = 0.0001

Output: For iterations from 1 to max iterations
for i, j = 1, 2, ... , m {
for k = 1, 2 {
Based on working set and gradient descent
direction

 TUUVWX = − YZ[\]VWX 1+]VWX 2+2�
]VWX 1

 αnew = αprev + offset
 dev = αnew – αprev
 Grad = dev*Pset1,set2

Reconstruct gradient
If(Grad≥0) Pset1[t:m]
else Pset1[0:t]
Parameters update αset1,set2, Grad, Gradset
 }
Reiterate until maximum iterations

}
If α > Threshold
 Assign support vector label, sv
else α = 0

 _
[V `[abW = ∑ �V` −∑ c�V`O��
 ,�Q �dV`

Stage 3: Testing process

Input: Input test samples
Output: for i, j = 1, 2 ... m {

Determine the class w.r.t separating hyper-plane

 efZW\
gXW\ = c�V`OP�
 , �Q R + _

 efZW\
gXW\ > 0}

Based on sign of the decision function
 classify to the corresponding class.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

54

During our embedded software design phase, we encounter several issues due to

stringent constraints of the embedded devices. One of the major issues is due to the

limited memory resources. In this case, certain functionalities of the normal C++

programs, executed on desktop computers, can not be directly designed and implemented

on the embedded devices. For instance, importing a pre-processor directive for vector

computations, from the desktop computer to the embedded devices, resulted in memory

limitations issues. In this case, we design a compact function in software that is capable

of performing the vector computation efficiently and effectively.

Furthermore, for our embedded software designs, the MicroBlaze processor is

configured to have the maximum available cache memory of 128KB, from which 64KB

is used for the Instruction Cache and 64KB is used for the Data Cache. However, this

128KB of cache memory is not sufficient to execute our software code and to process the

data, since our code starts hanging. To resolve this issue, initially, we vary the heap and

stack sizes; and also increase the addressing of the cache memory to accommodate

256KB. This indeed resolves our cache memory constraint issues, although the Xilinx

XPS tool still reports the size of the cache memory as 128KB.

Our embedded software architecture for the convex optimization based SVM

algorithm comprises three stages. These three stages as well as the functional flow of our

embedded software design are presented in Figure 3.4.

3.4.2 Embedded Hardware Architecture for CO-based SVM Algorithm

In this sub-section, we introduce our novel, customized, and optimized embedded

hardware architecture for the convex optimization based SVM algorithm. In this case, we

examine and analyze the functional flow of the aforementioned algorithm. Subsequently,

55

we partition this complex algorithm into three stages (SVM Module in Figure 3.3) to

simplify the design process. The operations of these three consecutive stages are:

mathematical kernels, convex optimization (or convex solver), and testing. It should be

noted that the solver is considered as the hardware IP to perform the optimization stage.

In this research work, we create our customized and optimized embedded

hardware architectures for each stage as separate modules. The hardware designs for each

stage comprise a data-path and a control path. The control path consists of finite state

machines (FSMs), and manages the control signals of the data-path and the BRAMs. We

also design a top-level module (i.e., SVM Module in Figure 3.3) to integrate the three

modules for the three stages. The top-level module provides necessary

communication/control among the three stages. The control path of the top-level module

also consists of several FSMs, multiplexers, and tri-state buffers to control the timing,

routing, and internal structures/functionalities of the designs.

The three stages of the CO-based SVM algorithm are executed non-sequentially

to utilize the parallel processing nature of the FPGA-based hardware. Initially, the first

stage, i.e., the mathematical kernel, is processed until a certain amount of results is

obtained from this stage. Then the p and q matrices (in equation 9), in the second stage,

i.e., the optimization (or the solver), is computed on the aforementioned kernel results,

while the remainder of the mathematical kernel is being proceed. In this case, the

execution time to compute the p and q matrices is typically less than the execution time to

compute the mathematical kernel; and the former depends on the results of the latter.

Hence, we design and develop a simple counter to create a time delay in order to wait

until the kernel has processed at least 50 training data samples, i.e., closer to 10% of the

56

total data size, before starting the second stage. Once the 10% of the mathematical kernel

results (from stage 1) are available, stage 2 computation starts. At this point, both the

stages 1 and 2 are executed in parallel. For all the stages, the intermediate/final results are

stored in the BRAM, and after all three stages are processed, the final results are written

to the DDR3-SDRAM.

The internal architectures of these three stages of the convex optimization based

(CO-based) SVM algorithm are detailed in the following sub-sections. These internal

architectures are customized and optimized in such away by exploiting the inherent

parallelism and pipeline nature of the CO-based SVM algorithm.

3.4.2.1 Stage 1: Mathematical Kernels

In the first stage of our embedded hardware design, we select and perform a

suitable mathematical kernel. As stated in [94], linearly inseparable vectors in the input

space can be transformed to linearly separable vectors in the feature space by mapping

the data points to a higher dimensional space. This transformation can be performed with

mathematical kernels (including linear, polynomial and Gaussian kernels), since the

bound does not depend on the dimensionality of the space for SVM [24]. This is an

efficient way to obtain a well-defined separating hyper-plane [92]. Mathematical kernels

are a set of algebraic transformation functions, which provides similarity information

between data features [93]. In order to utilize the mathematical kernels, the mapping

function (Φ(x)) in equation (16) must satisfy the Mercer’s condition [92], which states

that the inner product of the two input vectors must be defined for all the features, as

represented in equation (13) below.

 O��
, �i� = S��
�. S��i�

57

 ∫ ∫ k��
�O��
, �i�k��i� \�
 \�i ≥ 0 (13)

In this research work, we decide to create customized and optimized embedded

architectures for the Linear, Polynomial, and Gaussian Radial Basis Function (RBF),

since these are the three most popular mathematical kernels used for the SVM algorithm.

The equations for these three mathematical kernels are as follows [15]:

Linear Kernel: OP�
, �iR = �
 . �i (14)

Polynomial Kernel: KPx�, x5R = �c + x�. x5�m (15)

Gaussian RBF Kernel: KPx�, x5R = eop�=Io=M�q
 (16)

The datapath for the polynomial kernel is illustrated in Figure 3.5 (corresponding

to modules 2), whereas the datapath for the linear kernel is the dotted lines of Figure 3.5

(corresponding to modules 1). As shown, the datapath of the linear kernel consists of a

multiplier, adder, and an accumulator register with the feedback loop to the adder,

whereas the datapath for the polynomial kernel has a second adder and a power module.

The result of the linear kernel is the dot product operation of the two input data

samples. In this case, initially, the first two elements of the two data samples are read

from the BRAM, which is the first two elements of the first row, and the multiplication

operation is performed, followed by the accumulation operation on each multiplier result.

This process will continue until this multiplication and accumulation (MAC) operation is

performed on the last two elements of the two data samples. Then the final result of the

MAC operation is forwarded and stored on the BRAM for subsequent

analysis/computations. As depicted in Figure 3.5, the modules in the dotted line (in the

green box) comprise the MAC operation.

58

For the datapath for the polynomial kernel, the inputs to the second adder (Add2)

are the final result from the linear kernel as well as the coefficient c. This addition result

goes through the power module to perform the “power of d” on the addition results. In

this case, we create a hardware module for the power function using a simple loop to

iterate the multiplication based on the specified degree (d) value. Although this degree

value is parameterized in our design, a commonly used quadratic kernel is performed by

considering this degree value as two (2). The final result of this power module (Pow in

figure 3.5) is also forwarded and stored on the BRAM for subsequent computations.

Figure 3.5: Datapath for Liner and Polynomial Kernels

Figure 3.6: Datapath for Gaussian Radial Basis Function (RBF) Kernel

The datapath for the Gaussian kernel is demonstrated in Figure 3.6. The Gaussian

radial basis function (RBF) kernel is the most popular among the aforementioned three

mathematical kernels. The datapath comprises 3 MAC modules to perform part of the

xi

xj
K (xi, xj) Pow Add2

c d

2 2

MAC unit

Mul Add1
Acc.
reg

1, 2 1, 2 1, 2

xj

xj
MAC2

MAC3
xi

xj

Add1

Mul1
2

Sub1 Mul2

-γ

Exp1 K (xi, xj)

MAC1
xi

xi

59

equation (16), which is (xi-xj) 2, expanded into xi2+xj2-2xi.xj, which requires three dot

product operations. Next, the addition operation is performed on the results of the two

square operations, while the result of the MAC3 operation is multiplied by two. Then the

multiplier result is subtracted from the result of the addition operation. The subtracted

result is multiplied by the parameter known as gamma (γ). As stated in [132], this gamma

(γ) parameter determines the influence of a data sample on the separating hyper-plane. In

this case, the gamma (γ) value typically varies from 10-3 to 10+3 as needed. In this

research work, as detailed in Section 3.4, we vary the gamma (γ) value from 2x10-3 to

2x10+2 for both our embedded hardware and software designs. As shown in Figure 3.6,

the result of the multiplier operation (with Mult2) goes through the exponent module to

obtain the final result of the Gaussian RBF kernel. In this case, we create a parameterized

exponent hardware module based on the Taylor series expansion, which is represented by

the equation (17) [133] [134]. The final result of this exponent module is forwarded and

stored on the BRAM for subsequent computations.

 e= = 1 + x + =q�! + =s�! + =tu! … (17)

The output size of the matrix for the kernel computation depends on the number

of input data samples (m). Thus, the size of the K (xi, xj) matrix is m x m. After

processing 10% of the data for the kernel computation, the convex optimization process

is initiated. The computation to track 10% of the data processing is implemented using a

simple counter. The kernel computation is necessary to perform all iterations of the next

stage, which is the convex optimization. Hence, initially, the results of the mathematical

kernel are stored on the BRAM to ease the iterative process of the convex optimization.

60

3.4.2.2 Stage 2: Convex Optimization

The optimization stage is the most complex operation among the three stages of

the convex optimization based (CO-based) SVM algorithm. In order to reduce the

complexity, we divide stage 2 into three phases: parameter initialization, convex

optimization, and bias value computation. In this stage, the dual form of the SVM (in

equation (8)) is utilized to formulate the general convex optimization as shown in

equations (9) and (10).

3.4.2.2.1 Parameter Initialization Phase

During the parameter initialization phase of stage 2, several parameters in

equation (9) are computed including the objective function parameters (i.e., P, q),

constraint parameters (i.e., G, h, A, b const), and other parameters (α, Grad, feasible point).

In the convex optimization phase, α value and the Grad value are evaluated all the

iterations using the sequential minimal optimization (SMO) decomposition method

(detailed in chapter 2). Once the maximum number of iterations is reached, the bias value

b is computed in the final bias value computation phase. This bias value is used to

determine the intercept of the hyper-plane.

In this chapter, for stage 2, we design a generic convex optimization solver

utilizing the same naming convention for the parameters as the general form of convex

optimization from equation (10). In this case, the naming conventions b and b const are the

bias value (in equation (2)) and the constraints value (in equation (10)) respectively. The

aforementioned objective function and constraint parameters are computed in Stage 2

(phase I), as shown in Figure 3.4 (steps (b) and (c) respectively).

61

Objective function parameters: The P parameter (in equations (9) and (10)) is

an m x m matrix, which is computed using the dot product of the output labels yi. yj. The

y variable is the output label obtained from the dataset, and y represents the class of the

data sample, as in equation (1). In our design, during stage 1, y is typically pre-fetched to

the BRAM with the input samples. During stage 2, the result of the dot product (yi. yj) is

multiplied with the result of the kernel matrix K (xi, xj), in order to obtain the P matrix

(in equation (18)). In this case, as illustrated in Figure 3.7, the modules to compute the P

matrix consist of a MAC unit and a multiplier (i.e., MAC1 Unit and Mul1 respectively, in

figure 3.7). The elements of the P matrix are stored in the BRAM. The elements of the P

matrix in the BRAM are accessed using two separate address generators, in order to

create two sets of matrices Pset1 and Pset2. As stated in [15], for big data analysis, the

size of the P matrix increases in squared term with the increasing number of input data

samples; thus, performing the convex optimization using conventional methods such as

interior point methods become computationally challenging. To overcome this issue, a

specific decomposition method in [95] is employed to perform the convex optimization.

With this decomposition method, at any instance of time during the optimization process,

two working sets are selected. This decomposition method is detailed in the subsequent

convex optimization phase. The q parameter (in equations (9) and (10)) is an mX1

matrix. The q matrix is an array of ones, as in equation (19). For simplicity, during the

design phase, each element of the q matrix is kept as constants of 1s.

 P-, = K v ywyw ywy� … ywy-y�yw y�y� … y�y-⋮ ⋮ ⋱ ⋮y-yw y-y� … y-y-
z (18)

 q-,� = �1, 1, … , 1�. T (19)

62

Constraint parameters: In equations (9) and (10), the objective function is

subjected to the box constraint (which comprises G and h parameters), and the equality

constraint (which consists of A and b const). In this case, α parameter is a 1Xm matrix in

equation (10), which is same as the output label y in equation (9). As shown in equation

(10), b const parameter in equation (9) is set to zero. Also, bconst parameter in equation

(10) is set to zero in equation (9). In addition, G parameter in equation (10) is a constant

value of 1. The maximum threshold of the box constraint is h parameter in equation (10)

(i.e., C parameter in equation (9)). C is considered as the penalty parameter, which is a

user-defined vector provided during the parameter specifications. The value of C impacts

the overall speed-performance of the CO-based SVM algorithm. This impact is illustrated

in Section 3.4.

Other parameters: α parameter in equation (9), which corresponds to x in

equation (10), is crucial to identify the support vectors in the CO-based SVM algorithm.

Since the coordinate dimensions of the support vectors determine the orientation of the

hyper-plane, α values for all the input samples are initialized to zeros, prior to performing

the convex optimization. The goal of performing the convex optimization is to compute

the minimum value for α for each input sample. Based on the aforementioned threshold

value (C), the input samples with α value greater than threshold value, will be considered

as the support vectors. Furthermore, as discussed above, since the size of the P matrix

increases exponentially with the increasing number of input samples, two working sets

(or input samples) are selected and utilized to compute α in all the iterations. In this case,

for the initial starting point, a feasible set of (0, 0) is selected, which is the first input

samples of the dataset; and the Grad (gradient) value is initialized to zero. The slope of

63

the gradient to the minimum value typically corresponds to the gradient descent direction;

hence, the gradient value is utilized to select the next working set.

3.4.2.2.2 Convex Optimization Phase

After the parameter initialization phase, the convex optimization phase is

performed. During the convex optimization phase, five operations illustrated in steps (d)

to (h) (in Figure 3.4) are performed. The datapath for the convex optimization is shown in

Figure 3.7, which consists of several adders, multipliers, subtractions, MAC modules,

dividers, accumulator registers, comparators, and multiplexers. The convex optimization

process (as in equation 9) involves finding the minimum α value. In this case, α value is

computed using the Add1 to Add4, Mul1, Div1, and M0 (multiplexer) modules, as

illustrated in fig 3.7. In order to find the minimum α value, additional comparators,

multiplexers, and reconstruct gradient modules are utilized.

Figure 3.7: Datapath for Convex Optimization

Initially, during the first iteration to find the minimum α value, the two input

samples, Pset1 and Pset2 (stored in the BRAM) are accessed using the two separate address

generators, simultaneously. Next, the result of the addition operation (with Add1 in

Figure 3.7) of Pset1 and Pset2 are added (using Add2) to the result of the multiplier (i.e.,

Mul1), which corresponds to the step (f) in Figure 3.4. Then, the gradient value is divided

Pset2

Pset1

Add1

Mul2 -2
yi

BRAM
Active

set Acc.
reg

Grad

xi
MAC2

yi

w: weight

BRAM

 M2

0

Add2 Div1 Add5

M1
0

αprev(set1, set2)

reg

αnew(set1, set2)
Comp
≥ C

M3 0

Reconstruct
Gradient

Mul5

MAC1
Unit

yset1

Mul1

K(xi, xj)

yset2

Add3

Add4

Sub1

 Sub2

Mul3

Mul4 BRAM

64

(with Div1) by the result of the second addition operation (with Add2). Since the Grad

(gradient) value is initialized to zero, the initial result of the division is also zero. In our

design, the computation of the gradient parameter is modified using the reconstruct

gradient module in Figure 3.7. The internal architecture of the reconstruct gradient

module is demonstrated in Figure 3.8. During the first iteration, the value of α is zero.

The output (or result) of the division operation (with Div1 in Figure 3.7) is considered as

the offset value, which in turn is used to update α value. Apart from the first iteration,

where the initial α value is zero, from the second iteration onwards, the aforementioned

offset value, is added to α value, computed in the former iteration. For instance, the offset

value produced from the second iteration is added to α value generated from the first

iteration, and so on. In this case, two addition operations are performed in parallel (using

Add3 and Add4), in order to generate new α values for each working set. The new α

values are stored in the temporary register (i.e., reg in Figure 3.7), to be used for the

future iterations. Next, two subtraction operations are performed in parallel (using Sub1

and Sub2), to find the difference between the new α value and former α value, which

provides the deviation between the successive iterations. Then, the new α values are

multiplied in parallel (using Mul2 and Mul3), with Pset1 and Pset2, to find the gradient value

(Grad). These Grad values are stored in the on-chip BRAM for subsequent iterations and

operations. The aforementioned operations are illustrated in steps (d), (e), (f), and (g) in

Figure 3.4.

Finding the minimum value, for the objective function in equation (9), is an

iterative process. This process continues until it reaches the maximum number of

iterations, typically defined by the user. Once the maximum iteration is reached, the α

65

values are compared with the user-defined threshold value (C) of 10-3 using the Comp

module. In this case, the α values that are greater than the threshold value are considered

as the support vectors, and the α values that are less than threshold values are discarded.

These support vectors are important to determine the orientation of the hyper-plane. After

obtaining the optimal solution for α (i.e., the minimum α value from equation (9)), this

optimal α value is forwarded via the multiplexer (M3) to a multiplier (Mul5) followed by

a MAC module (MAC2) to compute the weight vectors (w) in equation (7). These weight

vectors and the α values are stored in the BRAM as well as in the DDR3-SDRAM for

subsequent testing stage.

Figure 3.8: Internal Architecture of Reconstruct Gradient Computation

The internal architecture (or the datapath) of the reconstruct gradient computation

is demonstrated in Figure 3.8. In case, if the optimization does not converge to a

minimum α value during the iterative process of convex optimization (i.e., steps (d) to (h)

in Stage 2, Figure 3.4), we utilize the reconstruct gradient module (in Figure 3.7) to

adjust (or update) the value of the gradient parameter (Grad), and repeat the convex

optimization process. Adjusting the values of the gradient parameter depends on the α

values. As illustrated in Figure 3.8, the comparator module checks whether the gradient

descent direction, of the current working set, is positive or negative. In this case, for the

Pset1, if the gradient descent direction is positive, then the remaining Pset1 values (from t

66

to m) are assigned from the current number of active sets to the remaining number of data

samples; and if the gradient descent direction is negative, then the working set is reset to

select from the initial set (from 0 to t) as shown in step (h) in Figure 3.4. Next, the

resulting Pset1 is selected via a multiplexer (M2), which is multiplied (with Mu13) with

the α value. Then the addition operation is performed (using Add3) on the results from

Add2 and the results from Mu13, in order to obtain the restructured Grad value. This

updated Grad value is stored in the BRAM for subsequent iterations and analysis, i.e., the

“Grad” signal as shown in Figure 3.7.

3.4.2.2.3 Bias Value Computation Phase

The last phase of Stage 2 is the bias value computation phase. The bias value b in

equation (2) is also known as the offset value [15], represents the intercept of the hyper-

plane with respect to the origin. The bias value is computed with the following equation

(20) [27]:

b = − �� | max}�|AM2o�~P∑ α�y�K�x�, x5�-52� R + min}�|AM2��~P∑ α�y�K�x�, x5�-52� R� (20)

 _ = P∑ ������ o ∑ ���������,������� R������ �� ������� �������,��� (21)

Equation (20) is modified to include the sum of all the support vectors and then

divided by the total number of support vectors to obtain the mean value as in equation

(21) [132]. As illustrated, equation (21) provides the average values for all the support

vectors, whereas equation (20) identifies the max and min value for each class support

vectors. The internal architecture (or datapath) of the bias value computation is

demonstrated in Figure 3.9, which comprises a MAC module, adder, multiplier,

subtractor, divider, and an accumulator register with a feedback loop to the adder. As

67

shown in Figure 3.9, the results (elements) of the kernel matrix (K (xi, xj) obtained from

Stage 1) is multiplied with the α value (obtained from Stage 2). The result of the Mul

module is multiplied with the y sv value (which is the output label in equation (1)

corresponding to the support vector) and summed using the MAC module. The datapath

of Mul and MAC corresponds to the second summation term in the equation (21). The

output label of the support vector (y sv) is passed through the Add module and

accumulator register (as in Figure 3.9), to obtain the first summation term in equation

(21). Finally, the result of the MAC is subtracted from the result of the accumulator

register, in order to obtain the numerator in equation (21). Finally, the result of the

subtractor is divided by the total number of support vectors (nsv) to obtain the bias value.

The final bias vale b is stored in the on-chip BRAM as well as in the DDR3-SDRAM for

subsequent analysis.

Figure 3.9: Internal Architecture of Bias Value Computation

3.4.2.3 Stage 3: Testing

Our stage 3, which is our final stage, is the testing process. Typically for

classification, the input dataset is divided into two samples: training and testing. During

Stages 1 and 2, training is performed using the training set, whereas during Stage 3,

testing is performed using the testing set. For the testing process, the testing data samples

are classified into -1 (minus one) class or +1 (plus one) class, based on the sign value of

 α
K(xi, xj)

Add

Sub Div

nsv

Bias value

BRAM
Acc.

reg

MAC Mul

ysv

68

the function f(x) in equation (3). In this case, if the output of the equation (3) is less than

zero (f(x) < 0), then the test vectors are assigned to -1 class; and if the output of the

equation (3) is greater than zero (f(x) > 0), and then the test vectors are assigned to +1

class. We utilize the following formula (derived from [27]), which is known as the

decision function (equation (22)), to design and develop our testing (or classification)

stage of the CO-based SVM algorithm.

 ∅���� = Vkd�∑ c
�
O��
, ����
2� + _� (22)

Figure 3.10: Datapath of Testing Process

The datapath of the testing process, which performs the final SVM classification,

is illustrated in Figure 3.10. As mentioned before, this datapath is designed and

developed based on the equation (22). In this stage, as in equation (22), it is necessary to

perform the sign verification for the testing (classification) process. As depicted in Figure

3.10, the datapath for the testing (classification) comprises a multiplier, a MAC module,

an adder, a comparator and a multiplexer. Initially, the test vectors (from the testing

sample) are pre-fetched to the BRAM from the DDR3-SDRAM and forwarded to the

kernel block in a pipelined fashion. As detailed in Stage 1 (Section 3.3), the Kernel

module maps these test vectors to the feature space. The two aforementioned steps (i.e.,

pre-fetching the test vectors, and mapping them to the feature space) are done in stage 1.

In Stage 3 of our design, we reuse the pre-fetch and kernel modules from Stage 1 to

reduce the total area occupied by our hardware design. The resource utilization is detailed

in Section 3.4.

Add

ysv

Test

vectors, xt
Kernel

b

Comparator
≥ 0

M1
-1

+1

MAC
Classifier o/p

BRAM

Mul

α

69

In stage 3, as shown in Figure 3.10, the result of the kernel computation, which is

the kernel matrix, is initially multiplied by the α value (obtained from Stage 2) using the

Mul module. Then the result of the Mul module is forwarded to the MAC module to

multiply with the output label of the support vector (ysv), and then perform the

summation operation corresponding to equation (22). The α value and the support vector

parameters (ysv) are computed during the convex optimization process, as detailed in

Section 3.3. Next, the bias value (b) (obtained in Stage 2 (in equations (2) and (21)) is

added (using the Add module) to the final summation result of the MAC module. Then

the result of the adder is forwarded to the comparator to determine whether the adder

result is greater than or equal to zero. Based on the results of the comparator, the test data

samples are assigned into +1 class or -1 class, via the multiplexer.

3.5 EXPERIMENTAL RESULTS AND ANALYSIS

We perform experiments to evaluate the feasibility and efficiency of our proposed

embedded designs, for convex optimization (CO) based SVM algorithm, in terms of the

speed-performance (speedup), accuracy, as well as the scalability to handle different

datasets with varying sizes. We measure the classification accuracy [132] and the speed-

performance utilizing the following equations (23) and (24), respectively. The scalability

metric is to demonstrate our embedded designs’ capability to handle different datasets

with varying data sizes, and varying number of attributes and other varying parameters

that are commonly found in many datasets of machine learning applications.

 Accuracy (in %), (�
, ��) = ��� ∑ 1��o�
2w ��
 == ��� ∗ 100 (23)

 Speedup =
Software execution time

Hardware execution time
 (24)

70

During the initial design phase, we compare our results with the results from an

open-source python code [132], in order to verify the correctness and the functionality of

our proposed embedded designs. The execution time for the embedded designs are

obtained in clock cycles and converted to seconds. Our proposed embedded architectures

(both the hardware and software) are executed on Virtex-6 FPGA running at 100MHz,

whereas the python code is executed on the desktop computer, with Intel-i7 processor,

running at 2.3GHz.

In this research work, the experiments are carried out to evaluate our embedded

designs on two different benchmark datasets: Ionosphere dataset [122] and Wisconsin

breast cancer diagnostic dataset [21] for machine learning applications. These datasets are

stored in the DDR3-SDRAM and formatted accordingly to distinguish between the input

features and the output labels. The data size is measured by considering the number of

input vectors/samples (n) and the number of dimensions/features (m) in each vector. For

our experiments, data sizes are varied to examine its impact on the accuracy, speedup,

and scalability.

For all our experiments, we partition the datasets into two sets: training and

testing. The test set is considered as a percentage of the dataset to investigate the

classification accuracy. In this case, the training set is varied from 10% to 90%, with an

increment of 10%.

Apart from varying the data sizes for the testing and training, the number of

iterations (to find the minima) is also varied for the training process, in order to examine

the ability and the speedup of the convex optimization process to find these minima

values.

71

3.5.1 Analysis on Resource Utilization

In order to examine the feasibility and area-efficiency of our embedded hardware

architectures, cost analysis on space (resource utilization) is carried out. In this case, after

the implementation process, we obtain the significant resource utilization parameters,

including the number of occupied slices, number of BRAMs, and number of DSP48E1

slices, whereas the number of occupied slices typically consist of the slice registers and

slice LUTs. These resource utilization statistics for our proposed embedded hardware

design is presented in Table 1. As illustrated, for our embedded hardware design, the total

number of occupied slices, number of DSP48E1, and number of BRAMs are 5216, 110,

and 118 respectively. Considering the total number of logic slices (37680 slices) in

Virtex-6 FPGA, our hardware design occupies only 12.7% of the chip area.

Table 1. Resource Utilization for Embedded Hardware.

Description Occupied area on chip

Number of occupied slices 5216

Number of BRAM 36E1 118

Number of DSP48E1 110

Number of slice registers 12784

Number of slice LUTs 12965

During our initial design phase, we explore the feasibility and tradeoff of utilizing

the registers versus BRAMs to store the intermediate results. From this investigation, it is

observed that utilization of BRAMs leads to substantial reduction of the total number of

occupied slices on the chip compared that of the registers. Furthermore, BRAMs are

imperative to hold the intermediate minima values during the sequential minimal

optimization (SMO) process. For certain operations, we utilize the DSP48E1 slices for

single-precision floating-point computations [135]. This design decision also leads to

72

more area-efficient and lower clock latency for the floating-point operations compared to

ones using the pure logic-based options [136].

Table 2. Execution Time, Speedup, Accuracy for Cancer Benchmark Dataset for Linear

Kernel, with C=1, d=2, γ =0.0001.

Data

size

Training

set (%)

No. of

vectors

Micro-Blaze

execution time

(clock cycles)

Hardware

execution time

(clock cycles)

Speedup
Accuracy

(%)

1707 10 57 161890000 6933463 23.35 83.43

3414 20 114 328230000 13357865 24.57 92.32

5121 30 171 655110000 24470082 26.77 90.47

6828 40 228 1342490000 32207844 41.68 91.52

8535 50 285 2112080000 35770689 59.04 92.28

10242 60 342 3109080000 43691507 71.16 91.66

11949 70 399 4294380000 61637143 69.67 92.39

13656 80 456 5773890000 84519878 68.31 91.22

15363 90 513 7551280000 101299406 74.54 92.98

Table 3. Execution Time, Speedup, Accuracy for Cancer Benchmark Dataset for

Polynomial Kernel, with C=1, d=2, γ =0.0001.

Data

size

Training

set (%)

No. of

vectors

Micro-Blaze

execution time

(clock cycles)

Hardware

execution time

(clock cycles)

Speedup
Accuracy

(%)

1707 10 57 359265478 122811272 2.93 81.09

3414 20 114 1698749510 134533462 12.63 86.18

5121 30 171 4548668857 155902214 29.18 93.48

6828 40 228 7772314965 184562787 42.11 88.88

8535 50 285 12353625978 222771368 55.45 86.31

10242 60 342 19230324150 268144802 71.72 93.42

11949 70 399 19744400000 323179673 61.09 92.98

13656 80 456 25290974839 385245965 65.65 92.98

15363 90 513 27795974670 460237826 60.39 96.49

Utilizing the on-chip BRAMs (and in few cases, using the registers) to hold the

intermediate results, substantially reduces the execution time for numerous matrix

computations inherent in the CO-based SVM algorithm, thus enhancing the overall

speed-performance of this algorithm as illustrated in Section 5.4.

73

The pre-fetching techniques introduced to reduce the memory access latency and

the on-chip BRAM to hold the data/results, indeed add more space (i.e., extra resources)

to the overall design of the CO-based SVM algorithm. Thus, it is important to consider

the speed-space tradeoffs, when designing certain algorithms/techniques, such as CO-

based SVM, for machine learning applications, which typically require processing large

volume of data, especially on embedded platforms with their stringent area constraints.

3.5.2 Analysis on Classification Accuracy

We perform experiments to evaluate the classification accuracy of our proposed

embedded designs for the CO-based SVM algorithm. In this case, the classification

accuracy for the CO-based SVM algorithm is obtained with the varying data sizes for the

maximum number of iteration of 1000. The classification accuracy is measured using

equation (23).

In order to measure the classification accuracy, we partition the datasets into two

sets: training and testing. The training set is varied from 10% to 90%, with an increment

of 10% to investigate the classification accuracy. Furthermore, for the linear, polynomial,

and Gaussian radial basis function (RBF) in Stage 1, we investigate and select the

following specifications: penalty parameter (C) to 1; degree of polynomial (d) to 2, with

coefficient of 1; and γ to 0.0001.

The aforementioned parameters are varied to find a good fit for constructing the

hyper-plane. Varying these parameters can potentially lead to under-fitting and over-

fitting problems [132]. The under-fitting occurs when the SVM generalizes the main

features of the data; whereas the over-fitting occurs when the SVM learns that it is

sensitive to the noise [27], [132]. As a result, for our experiments, we partition the

74

datasets and utilize the cross-validation method [27] to select suitable constants. The

cross-validation methods enable us to train the SVM by partitioning the dataset, and also

enable us to adjust the aforementioned parameters to obtain the best accuracy results. In

this case, in order to avoid the under-fitting and over-fitting issues, the SVM is trained

the tested with different parameters (C, degree, gamma, number of iterations) to construct

a better data classifier.

Table 4. Execution Time, Speedup, Accuracy for Cancer Benchmark Dataset for

Gaussian RBF Kernel, with C=1, d=2, γ =0.0001.

Data

size

Training

set (%)

No. of

vectors

Micro-Blaze

execution time

(clock cycles)

Hardware

execution time

(clock cycles)

Speedup
Accuracy

(%)

1707 10 57 622351344 46237098 13.46 73.54

3414 20 114 1699669752 94583736 17.97 88.79

5121 30 171 2762669586 110772637 24.94 89.61

6828 40 228 4754029339 128835483 36.9 92.72

8535 50 285 7267484089 148984913 48.78 92.66

10242 60 342 10895192675 224134801 48.61 92.48

11949 70 399 15652953272 337420850 46.39 91.14

13656 80 456 22175875454 385131564 57.58 90.81

15363 90 513 25205111592 463926221 54.33 90.27

Table 5. Execution Time, Speedup, Accuracy for Ionosphere Benchmark Dataset for

Linear Kernel, with C=1, d=2, γ =0.0001.

Data

size

Training

set (%)

No. of

vectors

Micro-Blaze

execution time

(clock cycles)

Hardware

execution time

(clock cycles)

Speedup
Accuracy

(%)

1194 10 36 339293000 10589052 32.04 65.94

2387 20 71 1002549999 30265650 33.12 67.53

3581 30 106 2088900000 52608548 39.7 69.78

4774 40 141 3566149999 86932128 41.02 61.66

5967 50 176 5243630000 102803892 51 77.26

7161 60 211 7641730000 134483893 56.82 75.6

8354 70 246 10094000000 162238668 62.21 96.71

9547 80 281 13728500000 218501180 62.83 95.12

10741 90 316 19554900000 311316697 62.81 100

75

The classification accuracy results for the overall CO-based SVM algorithm using

Cancer and Ionosphere benchmark datasets are presented in Tables 2-4 and 5-7,

respectively. Three sets of accuracy results (in percentage) are obtained separately, when

using three different mathematical kernels for Stage 1, i.e., linear (in Tables 2 and 5),

polynomial (in Tables 3 and 6, and Gaussian RBF (in Tables 4 and 7). The accuracy

results are presented in column 7 of these tables.

Table 6. Execution Time, Speedup, Accuracy for Ionosphere Benchmark Dataset for

Polynomial Kernel, with C=1, d=2, γ =0.0001.

Data

size

Training

set (%)

No. of

vectors

Micro-Blaze

execution time

(clock cycles)

Hardware

execution time

(clock cycles)

Speedup
Accuracy

(%)

1194 10 36 454131374 127739374 3.55 65.82

2387 20 71 1109957922 124685905 8.9 67.96

3581 30 106 2412208381 132320757 18.23 69.16

4774 40 141 4156918296 147575466 28.16 61.47

5967 50 176 6088204069 163878344 37.15 77.65

7161 60 211 8680224863 182982124 47.43 75.68

8354 70 246 11520789306 206488474 55.79 96.2

9547 80 281 15680125496 239989386 65.33 100

10741 90 316 20949687217 264792097 79.11 100

Table 7. Execution Time, Speedup, Accuracy for Ionosphere Benchmark Dataset for

Gaussian RBF Kernel, with C=1, d=2, γ =0.0001.

Data

size

Training

set (%)

No. of

vectors

Micro-Blaze

execution time

(clock cycles)

Hardware

execution time

(clock cycles)

Speedup
Accuracy

(%)

1194 10 36 131588528 17246202 7.63 60.32

2387 20 71 443339285 33586309 13.2 62.2

3581 30 106 1369622549 62597008 21.88 71.54

4774 40 141 2732821550 102237992 26.73 74.53

5967 50 176 3938128950 136693125 28.81 77.67

7161 60 211 8127266954 241523535 33.65 68.18

8354 70 246 7150427148 191957775 37.25 94.33

9547 80 281 20918761361 528652043 39.57 97.59

10741 90 316 29338152919 718544034 40.83 97.79

76

From Tables 2 to 7, it is observed that the classification accuracy varies with the

different datasets as well as with varying percentage of training sets. At a glance, the

classification accuracy seems to increase with the increasing percentage of training set for

both the datasets. For instance, classification accuracy increases: from 83%-93% (in

Table 2) and from 66%-100% (in Table 5) with the linear kernel; from 81%-96% (in

Table 3) and 66%-100% (in Table 6) with the polynomial kernel; and 74%-90% (in Table

4) and 60%-98% (in Table 7) with the Gaussian RBF kernel. From Tables 5 to 7, the

Ionosphere datasets has 100% classification accuracy, when the percentage of training set

is 90% of the dataset with linear and polynomial kernels. From Table 2 to 4, the Cancer

benchmark dataset achieves the best classification accuracy of 96% with the polynomial

kernel, when the percentage of training set is 90% of the dataset. It should be noted that

the classification accuracy results are the same for our embedded hardware design as well

as for our embedded software design.

Apart from our embedded hardware and software designs, the classification

accuracy experiments are also performed on the python code running on the desktop

computer. The accuracy results when using the linear, polynomial, and Gaussian RBF

mathematical kernels are presented in Figures 3.11 and 3.12 for the Cancer and

Ionosphere benchmark datasets (with the maximum number of iteration of 1000),

respectively. The accuracy results of our designs when using the linear, polynomial, and

Gaussian RBF mathematical kernels (from Tables 2 to 7) are also presented in Figures

3.11 and 3.12 for the Cancer and Ionosphere benchmark datasets, respectively.

77

Figure 3.11: Graph of Classification Accuracy vs. Data Size for Cancer Benchmark

Dataset

Figure 3.12: Graph of Classification Accuracy vs. Data Size for Ionosphere Benchmark

Dataset

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

A
c
c
u

r
a

c
y

Data size

Accuracy vs. Data size (Max iteration count = 1000)

Our design (lin)

Our design (poly)

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

A
c
c
u

r
a

c
y

Data size

Accuracy vs. Data size (Max iteration count = 100)

Our design (lin) 1.1

Our design (poly) 2.3

78

From these results, it is evident that classification accuracy varies with different

datasets, with varying data sizes, as well as with different classification techniques. As

detailed in Chapter 2, selecting a suitable classifier for a specific dataset is not a trivial

task. By employing the cross-validation method, we can vary and select the most

appropriate parameters that can indeed facilitate this task, which in turn will lead to better

classification results.

Figure 3.13: Graph of Classification Accuracy vs. Number of Iterations for Cancer

Benchmark Dataset

0

10

20

30

40

50

60

70

80

90

100

100 500 1000 1500 2000 2500

A
c
c
u

r
a

c
y

 (
%

)

Number of iterations

Accuracy vs. Number of iterations

Lin - Emb Poly - Emb RBF - Emb

79

Figure 3.14: Graph of Classification Accuracy vs. Number of Iterations for Ionosphere

Benchmark Dataset

3.5.2.1 Analysis of Classification Accuracy with Varying Number of Iterations

The aforementioned classification accuracy results are obtained with varying data

sizes and with constant number of iterations. We perform additional experiments to

analyze the classification accuracy results with varying number of iterations and with

constant data size. In this case, we select the training set data size of 50% for both the

Ionosphere and Cancer datasets. In this case, we vary the maximum number of iterations

from 100 to 2500 with an increment of 500, to find the minima value. The classification

accuracy results of our designs when using the linear, polynomial, and RBF mathematical

kernels are shown in Figures 3.13 and 3.14, for the Cancer and Ionosphere benchmark

datasets, respectively.

0

10

20

30

40

50

60

70

80

90

100

100 500 1000 1500 2000 2500

A
c
c
u

r
a

c
y

 (
%

)

Number of iterations

Accuracy vs. Number of iterations

Lin - Emb Poly - Emb RBF - Emb

80

Table 8. Accuracy vs. Number of iterations – Cancer Dataset

of iterations

Accuracy - Embedded Design

Lin -

Embedded

design

Poly -

Embedded

design

RBF -

Embedded

design

100 81.57 79.82 89.74

500 89.47 79.82 89.74

1000 91.22 79.82 89.74

1500 91.22 79.82 89.74

2000 91.22 79.82 89.74

2500 92.98 49.12 89.74

Note: C = 1, degree (d) = 2, gamma (γ) = 0.0001, Data size = 50%

Table 9. Accuracy vs. Number of iterations – Ionosphere Dataset

of iterations

Accuracy - Embedded Design

Lin -

Embedded

design

Poly -

Embedded

design

RBF -

Embedded

design

100 81.57 79.82 89.74

500 89.47 79.82 89.74

1000 91.22 79.82 89.74

1500 91.22 79.82 89.74

2000 91.22 79.82 89.74

2500 92.98 49.12 89.74

Note: C = 1, degree (d) = 2, gamma (γ) = 0.0001, Data size = 50%

For the Ionosphere datasets, it is observed that the convex optimization process

converges to the minima with less number of iterations, for instance in 100 iterations in

some cases. As a result, the impact of number of iterations on accuracy is insignificant, as

shown in Figure 3.14.

81

3.5.3 Analysis on Execution Time

As detailed in Section 3.2, in order to evaluate the speed-performance of our

embedded hardware designs, we design and implement the embedded software for the

CO-based SVM algorithm. The software design is executed on the Micro-Blaze soft

processor on the same ML605 development platform. The execution times for both the

embedded hardware and software designs are obtained using the AXI Timer running at

100MHz on the ML605 board. These execution times are measured in real-time, while

our designs are actually running on the chip. In this case, we design the AXI Timer in

cascade mode to measure the accurate execution time for all three stages of the CO-based

SVM algorithm. This is mainly because in certain scenarios, especially for large datasets,

the execution time exceeds the allowable timer counter value of the AXI Timer. In order

to resolve the counter overflow issue, the AXI timer is designed utilizing two timers in

cascade mode.

The execution times for both our embedded hardware and software designs are

obtained with the varying data sizes for the maximum number of iterations of 1000. The

execution times for the overall CO-based SVM algorithm using the Cancer and

Ionosphere benchmark datasets are presented in Tables 2-4 and 5-7, respectively. Similar

to the classification accuracy results, three sets of execution times for embedded software

and embedded hardware designs are obtained separately, when using three different

mathematical kernels for Stage 1, i.e., linear (in Tables 2 and 5), polynomial (in Tables 3

and 6), and RBF (in Tables 4 and 7). The execution time for each set (for both the

embedded hardware and software) is measured 10 times and the average is presented in

columns 4 and 5 of these tables, respectively.

82

Figure 3.15: Embedded Software for CO-Based SVM: Execution Times vs. Data Size for

Cancer Benchmark Dataset

The execution times for the embedded hardware and software designs for the CO-

based SVM algorithm using the linear, polynomial, and Gaussian RBF kernels are

illustrated in Figure 3.15 and 3.16, respectively, for the Cancer benchmark datasets. As

illustrated, the execution times increase almost exponentially with the increasing data

sizes, for both the embedded hardware and software designs. Somewhat similar results

are obtained when using the Ionosphere dataset. The CO-based SVM with linear kernel

takes less execution time compared to that of the polynomial kernel. As illustrated in

Figure 3.15 and 3.16, the execution times are the highest for CO-based SVM with the

polynomial kernels, whereas the execution times are the lowest for CO-based SVM with

the linear kernels for the Cancer dataset.

0

5E+09

1E+10

1.5E+10

2E+10

2.5E+10

3E+10

1707 3414 5121 6828 8535 10242 11949 13656 15363

E
x

e
c
u

ti
o

n
 t
im

e
 (

A
X

I
 C

lo
c
k

 c
y

c
le

s
)

Data size

Software execution time vs. Data size

Lin

Poly

RBF

83

Figure 3.15.1: Embedded Software for CO-Based SVM: Execution Times vs. Data Size for

Ionosphere Benchmark Dataset.

Figure 3.16: Embedded Hardware for CO-Based SVM: Execution Times vs. Data Size

for Cancer Benchmark Dataset

0

5E+09

1E+10

1.5E+10

2E+10

2.5E+10

3E+10

3.5E+10

1194 2387 3581 4774 5967 7161 8354 9547 10741

E
x

e
c
u

t
i
o

n
 t
i
m

e

(
A

X
I

C

l
o

c
k

c
y

c
l
e
s
)

Data size

Software execution time vs. Data size

Lin

Poly

RBF

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

450000000

500000000

1707 3414 5121 6828 8535 10242 11949 13656 15363

E
x

e
c
u

ti
o

n
 t
im

e
 (

A
X

I
 C

lo
c
k

 c
y

c
le

s
)

Data size

Hardware execution time vs. Data size

Lin

Poly

RBF

84

Figure 3.16.1: Embedded Hardware for CO-Based SVM: Execution Times vs. Data Size for

Ionosphere Benchmark Dataset.

Table 10. Hardware execution time vs. Number of iterations – Cancer Dataset

Max. iterations Linear Polynomial RBF

500 47881098 57628552 88430257

1000 35770689 52771368 148984913

1500 80857778 102599012 152423593

2000 128725569 126131230 162257694

2500 150962104 148160823 175812280

3000 143920135 193942670 178098186

Note: C = 1, degree (d) = 2, gamma (γ) = 0.0001, Data size = 50%

3.5.3.1 Analysis of Execution Times with Varying Number of Iterations

The aforementioned execution times are obtained with varying data sizes and with

constant number of iterations. Similar to accuracy analysis, we perform additional

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

800000000

1194 2387 3581 4774 5967 7161 8354 9547 10741

E
x

e
c
u

t
i
o

n
 t
i
m

e

(
A

X
I

C

l
o

c
k

c
y

c
l
e
s
)

Data size

Hardware execution time vs. Data size

Lin

Poly

RBF

85

experiments to analyze the execution times with varying number of iterations and with

constant data size. In this case, we vary the maximum number of iterations from 500 to

3000 with an increment of 500, to find the minima value as shown in Table 10 and 11.

Table 11. Hardware execution time vs. Number of iterations – Ionosphere Dataset

Max. iterations Linear Polynomial RBF

500 111498241 75833237 136693567

1000 102803892 163878344 136693125

1500 204012481 214907978 136693183

2000 278499821 298532129 136692360

2500 278858795 312702454 136693468

3000 304813706 362067934 136693340

Note: C = 1, degree (d) = 2, gamma (γ) = 0.0001, Data size = 50%

The execution times for both the embedded hardware and software are also

obtained with the varying number of iterations for both the benchmark datasets with the

training set data size of 50%. The embedded hardware execution times for Cancer and

Ionosphere datasets are presented in Figures 3.17 and 3.18, respectively. Visually, as

shown in Figure 3.17, for our embedded hardware designs, the execution times increase

almost linearly with the increasing number of iterations, for all three kernels, for the

Cancer benchmark datasets. For the Ionosphere benchmark dataset, as depicted in Figure

3.18, the embedded hardware execution times increase almost linearly with the increasing

number of iterations, for the linear and polynomial kernels; whereas for the RBF kernel,

the embedded hardware execution times remain the same with the increasing number of

iterations.

For our designs, we utilize the maximum number of iteration (in our case, 1000

iterations) as our threshold point to find the minima value, instead of implementing a

86

specific stopping criterion. Hence, our convex optimization solver has to reach the

maximum number of iterations, in order to complete the execution of the CO-based SVM

algorithm. Conversely, a stopping criterion terminates the execution of the CO-based

SVM algorithm, when the objective function converges to the minima value, which may

or may not reduce (or increase) the total execution time.

Figure 3.17: Embedded Hardware for CO-Based SVM: Execution Times vs. Number of

Iterations for Cancer Benchmark Dataset

3.5.4 Analysis on Speedup

The performance-gain (or speedup), resulting from the embedded hardware

design over embedded software running on Micro-Blaze, for the CO-based SVM

algorithm using three different mathematical kernels, is presented in column 6 in Tables

2-7. The speedup is measured using equation (24). Figures 3.19 and 3.20 demonstrate the

0

50000000

100000000

150000000

200000000

250000000

500 1000 1500 2000 2500 3000

E
x

e
c
u

t
i
o

n
 t
i
m

e

(
A

X
I

C

l
o

c
k

c
y

c
l
e
s
)

Number of iterations

Hardware execution time vs. Number of iterations

Lin

Poly

RBF

87

speedup versus the data sizes (percentage of training set) for our embedded hardware

design for the CO-based SVM with the linear, polynomial, and Gaussian RBF kernels for

the Cancer and Ionosphere benchmark datasets, respectively. At a glance, as shown in

Figures 3.19 and 3.20, the speedup typically increases as the percentage of training set

increases for both the datasets. Also, Table 12 and 13 illustrates the speedup different

computing platforms with respect to hardware design. In Table 12 and 13, the execution

time is measured in seconds the speedup is computed by dividing the chosen platform

execution time over respective platform. The result is the speedup comparison among

different available computing platforms.

Figure 3.18: Embedded Hardware for CO-Based SVM: Execution Times vs. Number of

Iterations for Ionosphere Benchmark Dataset

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

500 1000 1500 2000 2500 3000

E
x

e
c
u

t
i
o

n
 t
i
m

e

(
A

X
I

C

l
o

c
k

c
y

c
l
e
s
)

Number of iterations

Hardware execution time vs. Number of iterations

Lin

Poly

RBF

88

Table 12. Speedup Comparison – Cancer Dataset

Platform
Execution Time (s) Speedup over SW Speedup over python

Lin Poly RBF Linear Poly RBF Lin Poly RBF

SW-100MHz 75.51 277.96 252.05 - - - 0.04 0.01 0.004

Python-2.3GHz 3.16 3.0319 1.0156 23.84 91.67 248.17 - - -

HW-100MHz 1.01 4.6023 4.6392 74.54 60.39 54.3307 3.12 0.65 0.21

Note: C = 1, degree (d) = 2, gamma (γ) = 0.0001, maximum number of iterations = 1000

Table 13. Speedup Comparison – Ionosphere dataset

Platform

Execution Time (s) Speedup over SW Speedup over python

Lin Poly RBF Lin Poly RBF Lin Poly RBF

SW-100MHz 195.54 209.49 293.38 - - - 0.01 0.43 0.001

Python-2.3GHz 3.76 92.02 0.46 51.93 2.27 626.88 - - -

HW-100MHz 3.11 2.64 7.18 62.81 79.11 40.83 1.20 34.75 0.06

Note: C = 1, degree (d) = 2, gamma (γ) = 0.0001, maximum number of iterations = 1000

For the Ionosphere benchmark dataset, as in Figure 3.20, for the one with

polynomial kernel, the speedup increases linearly when the percentage of training set

increases from 10% to 100%; for the one with linear kernel, the speedup increases

almost linearly when the percentage of training set increases from 10% to 80%, and the

speedup remains the same when the percentage of training set increases from 80% to

100%; for the one with RBF kernel also the speedup increases almost linearly when the

percentage of training set increases from 10% to 100%.

For the Cancer and Ionosphere benchmark dataset, as in Figure 3.19 and 3.20, for

the one with polynomial kernel, the speedup increases linearly when the percentage of

training set increases from 10% to 70%, and the speedup drops slightly when the

percentage of training set increases from 70% to 100%; for the one with linear kernel, the

89

speedup increases linearly when the percentage of training set increases from 10% to 70

and from 90% to 100; for the one with RBF, the speedup increases linearly when the

percentage of training set increases from 10% to 60% and from 80% to 90% and the

speedup drops slightly when the when the percentage of training set increases from 60%

to 80% and from 90% to 100%.

Figure 3.19: Embedded Hardware for CO-Based SVM: Speedup vs. Data Size for Cancer

Benchmark Dataset

To provide a comparison with the available source, Table 14 ad 15 provides the

accuracy results with the similar test data size. It is evident from Table 4-7 and Table 14-

15 that for the same test environment, the results are similar. We can further evaluate

with more complex patterns to illustrate the effects of SVM parameters, size of data sets

etc for further analysis.

0

10

20

30

40

50

60

70

80

1707 3414 5121 6828 8535 10242 11949 13656 15363

S
p

e
e
d

u
p

Data size

Speedup vs. Data size

Lin

Poly

RBF

90

Figure 3.20: Embedded Hardware for CO-Based SVM: Speedup vs. Data Size for

Ionosphere Benchmark Dataset

Table 14. Python code - Accuracy for Cancer Benchmark Dataset

Data size

Training set

(%)

vectors

Accuracy (%)

Lin -

Python

Design

Poly -

Python

Design

RBF -

Python

Design

1707 10 57 82.58 87.08 68.1

414 20 114 70.48 94.93 87

5121 30 171 95.46 66.75 92.44

6828 40 228 75.88 91.17 92.94

8535 50 285 81.62 55.83 91.87

10242 60 342 82.74 96.46 93.36

11949 70 399 96.44 95.26 93.49

13656 80 456 25 61.6 93.75

15363 90 513 10.9 16.36 96.36

Note: C = 1, degree (d) = 2, gamma (γ) = 0.0001, Maximum number of iterations = 1000

0

10

20

30

40

50

60

70

80

90

1194 2387 3581 4774 5967 7161 8354 9547 10741

S
p

e
e
d

u
p

Data size

Speedup vs. Data size

Lin

Poly

RBF

91

Table 15. Python code - Accuracy for Ionosphere Benchmark Dataset

Data size

Training set

(%)

vectors

Accuracy (%)

Lin -

Python

Design

Poly -

Python

Design

RBF -

Python

Design

1194 10 36 82.8 69.74 66.56

2387 20 71 81.36 73.47 67.74

3581 30 106 82.37 68.85 70.08

4774 40 141 84.68 80.86 73.2

5967 50 176 86.2 91.37 78.16

7161 60 211 94.24 90.64 68.34

8354 70 246 99.03 95.19 95.19

9547 80 281 94.2 97.1 97.1

10741 90 316 91.17 97.05 97.05

Note: C = 1, degree (d) = 2, gamma (γ) = 0.0001, Maximum number of iterations = 1000

As mentioned earlier, additional software experiments are performed on a desktop

computer; thus, we also compare our embedded hardware designs running at 100MHz on

Virtex-6 FPGA with the baseline python software design on the Intel i7 processor

running at 2.3GHz. In this case, our embedded hardware design achieves 3.1 times

speedup compared to the python design for the Cancer dataset with the linear kernel; and

our embedded hardware design achieves 34.8 times speedup compared to the python

design for the Ionosphere dataset with the polynomial kernel.

In summary: It is observed that for the CO-based SVM algorithm, as the number

of samples (i.e., vectors) increases, the accuracy and total speedup also increase. In this

case, when the CO-based SVM classifier has more samples to learn, it could lead to

identifying complex patterns, and also generating a better separating hyper-plane.

Furthermore, as the size of the matrices is increasing, as well as the complexity of the

92

computations/operations is increasing, customized and optimized designs might be the

best avenue to accelerate and enhance various performance metrics of the CO-based

SVM algorithms, compared to the conventional computing platforms such as general-

purpose processors.

3.5.5 Analysis on Existing Works on FPGA-Based Hardware Architectures for CO-

Based SVM

We performed an extensive investigation on the existing works on FPGA-based

hardware architectures for CO-based SVM algorithms in the published literature. Since

we could not find any related work specifically for CO-based SVM, we extended our

investigations to the existing works on FPGA-based hardware for general SVM. Our

investigation revealed that there are many papers on FPGA-based hardware for SVM;

however, we decided to select, discuss, and present some papers that are most recent

and/or closely related to our proposed hardware architectures and techniques for creating

CO-based SVM. Hence, it should be noted that this is not an exhaustive analysis on the

existing works on FPGA-based hardware architectures for SVM. Detailed analysis of

other existing works can be found in some survey papers such as [33], [34].

FPGA-based parallel processing hardware architecture was proposed for SVM

using stochastic gradient descent (SGD) as the training method, in [35]. The authors

demonstrated the scalability of the SGD approach for SVM in terms of fixed-point vs.

single-precision floating-point computations. The hardware design was generated using

the Xilinx System Generator design tool, and executed on Xilinx ML605 board with

Virtex-6 FPGA. In this case, the synthesis results were obtained and reported, in terms of

area, time, and throughput; however, the classification accuracy results were not reported.

From the results, it is evident that parallelization led to the increase in occupied area, thus

93

confirming that higher speedup due to parallelization, comes with the penalty of larger

occupied area on chip. The proposed design could have demonstrated to execute datasets

with more than 4 features/attributes, which is indeed a limitation when executing large

volume of data with many attributes. Conversely, our proposed design can execute

datasets with varying sizes and with any number of features/attributes.

In [4], an energy-efficient embedded binarized SVM architecture was proposed

and implemented on an FPGA. The computation kernels were designed in C/C++ and

transformed into HDL using Xilinx HLS (high-level synthesis) tools. The proposed

hardware design was executed on Xilinx Virtex-6/7 FPGAs. The results were obtained

and reported, in terms of area, speedup, power, and classification accuracy. The FPGA’s

performance matric results (especially speedup and power) were compared with that of

the CPU and GPU. From the results, it is evident that FPGA and GPU achieved

significant speedup compared to the CPU. The power consumption of the GPU was

significantly higher than that of the FPGA. These results illustrate that FPGA-based

hardware architecture for SVM can achieve better performance-per-Watt, thus suitable

for embedded devices with stringent power requirements.

An FPGA-based hardware accelerator was proposed for approximate SVM in

[36], utilizing two approximation techniques, including precision scaling and loop

perforation. The hardware was designed using Xilinx Vivado HLS tool, and executed on

Xilinx Zynq7 ZC706 board. The results were obtained and reported, in terms of area,

speedup, and classification accuracy. From the results, it is evident that the approximate

computing led to higher speedup, but with the penalty of larger occupied area (or

94

resource utilization) on chip, and lower classification accuracy. In some cases, the

significant accuracy loss did not compensate with significant increase in speedup.

In [37], an FPGA-based hardware design was proposed for SVM classifier. In this

case, three variable-size SVM models were implemented using different optimization

techniques. The proposed hardware was designed using Xilinx Vivado HLS tool, and

executed on Xilinx Zynq7 ZC702 board. The results were obtained and reported, in terms

of area, speedup, power, and classification accuracy. Also, in this paper, the training

phase was done offline on software; hence, the support vectors were pre-computed, and

forwarded to the proposed hardware design, which is created only for the testing phase.

An FPGA-based parallel processing architecture was proposed in [38] for training

phase of SVM using Sequential Minimal Optimization (SMO). The proposed hardware

design was executed on Xilinx Virtex-6/7/Ultra-scale FPGAs. The synthesis results were

obtained and reported, in terms of area, throughput, and speedup; however, the

classification accuracy results were not reported. In this case, the authors utilized the

hardware friendly kernel (HFK) for SVM training, which leads to reduction in precision

of the floating-point operations. Although marginal loss in accuracy is acceptable for

testing, utilizing HFKs for training would result in an inefficient construction of a hyper-

plane during training.

In [39], a FPGA-based hardware-software co-design was proposed to accelerate

the SVM algorithm by utilizing a two-level approach: first to optimize the global

structure of the SVM; and second to refine it through the design exploration. The

proposed architecture was designed using Xilinx Vivado HLS tool, and executed on

Xilinx Zynq Zedboard. The results were obtained and reported, in terms of area, latency,

95

and speedup; however, the classification accuracy results were not reported. As authors

indicated, for high values of SVM parameters, the resource utilization (i.e., occupied

area) increased significantly, which would be an issue for embedded devices with

stringent area requirements. In this paper, the authors extensively discuss and analyze the

advantages/disadvantages of utilizing the HLS tools to transform the designs written in

C/C+ to HDL, thus providing insight into the HLS inefficiencies, which would be very

useful when creating optimized hardware architectures in order to improve certain

performance metrics, including the latency.

An FPGA-based coarse-grained reconfigurable hardware architecture was

proposed in [40], for various machine learning (ML) algorithms, including SVM,

decision trees, and artificial neural networks. The hardware was designed using Xilinx

Vivado tool, and executed on Xilinx Virtex-7 FPGA. The results were obtained and

reported, in terms of area, and speedup; however, the classification accuracy results were

not reported. In this case, in order to change from one ML algorithm to another, authors

claim that the reconfigurable processing nodes (RPNs) of the proposed architecture, can

be reconfigured individually; however, no details are provided how this can be done. This

requires partial reconfiguration of the FPGA; thus, adding significant complexity to the

design process, which has not been addressed or discussed in the paper.

A scalable FPGA-based architecture was proposed in [41] to accelerate the SVM

classification. The hardware was designed in VHDL, and executed on Altera Stratix III

EP3SE260 board. The results were obtained and reported, in terms of speedup; however,

the occupied area was not reported. Furthermore, in this paper, the authors only proposed

the hardware design for the testing phase. Hence, the support vectors were pre-computed

96

and stored in the on-chip memory for subsequent processing during the testing phase. The

same authors proposed a design flow for the SVM training phase in [42].

From this investigation, it is evident that most of the existing works proposed

hardware architectures either for testing or for training, but not for both. In summary,

from this investigation, and to the best of our knowledge, we could not find any similar

work as ours, in the published literature, that provides FPGA-based hardware accelerators

for CO-based SVM, especially on embedded devices, nor could we find any similar work

that proposed system-level architectures, which is imperative for the machine learning

applications in real-world scenarios.

3.6 Chapter Summary

In this chapter, we introduced novel, unique, customized, and optimized FPGA-

based hardware accelerator for convex optimization (CO)-based support vectors

machines (SVM) on embedded devices. Our hardware architectures for CO-based SVM

were created in such a way to be generic, parameterized, and scalable; hence, without

changing the internal architectures, our hardware designs can be used to process different

datasets with varying sizes; can be executed on different embedded platforms, including

the platforms with recent FPGAs such as Virtex-7 chips; and can be utilized for

linear/non-linear separable, multi-dimensional datasets, making it suitable for various

machine learning applications such as medical testing for cancer diagnosis, data analysis

for quality control, image classifications, and speech recognition. By providing generic

and independent IPs (intellectual properties) for each stage, these independent IPs can be

utilized for any machine learning or similar application, and are not limited to a specific

application.

97

Our proposed embedded hardware accelerators can be reconfigured (on-the-fly) to

select the most suitable mathematical kernel (out of three different kernels, i.e., linear,

polynomial, and Gaussian radial basis function), based on the requirements of a given

machine learning application. Our proposed hardware architectures/accelerators and

techniques were created and optimized considering the constraints associated with the

embedded devices as well as the requirements of the CO-based SVM algorithm.

We also introduced unique and efficient system-level architecture for our

proposed embedded hardware accelerators for CO-based SVM, in order to process the

data efficiently and effectively. With the system-level architecture, we created and

integrated unique pre-fetching techniques to reduce the memory access latency and to

facilitate real-time processing of our proposed hardware accelerators.

To the best of our knowledge, we could not find any similar work in the published

literature that provides FPGA-based hardware accelerators/architectures for CO-based

SVM on embedded devices, nor could we find any similar work that proposed system-

level architectures, which is imperative for machine learning applications for real-world

scenarios.

Our proposed embedded hardware accelerators for CO-based SVM executed up to

79 times faster than their software counterparts on the embedded processor, and also

executed up to 35 times faster than the equivalent software running on a desktop

computer. This significant performance improvement was due to several hardware

optimization techniques incorporated into our embedded hardware architectures,

including creating customized and optimized architectures by exploiting inherent

parallelism and pipeline nature of the computations/tasks; designing computations/tasks

98

to overlap with memory access; burst transfer and pre-fetching techniques. Furthermore,

our embedded hardware accelerators achieved up to 100% classification accuracy. It was

also observed that our embedded hardware accelerators achieved better performance

(with a constant number of iterations to find the minima for the convex optimization,

requiring much less number of iterations) compared to that of the desktop computer.

From the results and analysis of our proposed hardware accelerator, it was also observed

that the accuracy results and the speedup results increased with the increasing data size.

These performance metrics are crucial especially for real-time machine learning

applications on resource-constrained embedded devices.

Considering the resource utilization values (i.e., occupied area on chip), it was

observed that those values were compatible with our previously proposed efficient

FPGA-based hardware accelerators for applications with similar computation complexity

on embedded device [44], [45], [47]. Since pre-fetching techniques integrated to reduce

the memory access latency added extra hardware resources, it is important to consider the

speed-space tradeoffs, especially in embedded devices with their limited hardware

footprint.

These experimental results are encouraging and indeed show a great potential in

creating and utilizing FPGA-based hardware architectures to support and accelerate

machine learning applications, specifically on embedded platforms. The compact size of

our proposed accelerators as well as the ability of our embedded architectures to

dynamically train from the unstructured datasets, further enhance the potential of

deploying machine learning applications on embedded devices. Currently, we are

exploring the most recently proposed optimization techniques for SVM [7] and deep

99

neural mapping SVM. We are also planning to provide dynamic reconfigurable hardware

accelerators [36], [37], [46] for machine learning applications to integrate smart and

adaptive traits to our designs.

Power consumption is another major issue in resource-constrained embedded

devices. However, in this chapter, we do not report power, mainly because Xilinx Power

Analysis tools, for the ML605 platform with Virtex-6 FPGA, reports estimated power,

which is not necessarily accurate. Also, FPGAs typically consume less power than

embedded processors [10]. Regardless, we are planning to investigate sophisticated

power analysis tools to measure power consumption of our FPGA-based hardware

accelerators on embedded devices.

In this chapter, we introduced novel, unique and optimized embedded hardware

accelerator architecture for data classification using SVM on portable and mobile

embedded devices. SVM is one of the popular data classification algorithm used in

machine learning. Applications such as medical diagnosis, ionosphere data analysis,

SVM can be used to categorize efficiently by reducing the generalization errors. We

discussed the implementation details for both embedded software and embedded

hardware architecture. We performed experiments to illustrate the feasibility of

scalability of the accelerator modules suitable for large-scale real-time data processing.

100

CHAPTER 4

SYSTOLIC ARRAY ARCHITECTURE FOR SUPPORT VECTOR MACHINES

Many machine learning applications have found their way into portable mobile

devices, which have limited resource availability. In this chapter, we investigate parallel

processing architecture for machine learning applications, since our previous work

[219],[220],[221] on FPGA-based parallel processing architectures for compute/data-

intensive applications demonstrated significant performance-gain with the penalty of

area. Considering these tradeoffs, we introduce a novel, unique and efficient hardware

architecture to accelerate support vector machines using systolic array configuration on

embedded platforms. We evaluate the feasibility, efficiency, and scalability of our

hardware architecture utilizing both embedded software and hardware optimization

techniques. Our design is generic, parameterized and adaptable with various numbers of

systolic arrays for machine learning applications. Our proposed hardware design achieves

107 times speedup compared to its software counterpart and can also achieve 100%

classification accuracy.

4.1 Introduction

Machine learning is a method of data analysis that enables a system to

automatically learn and perform a specific task without explicit instructions. It is part of

Artificial Intelligence (AI), for extracting valuable information from large volume of data

using algorithms and statistical models [15]. Due to the benefits of identifying important

insights in data, machine learning has spread into various fields of applications such as

cyber-security, health-care, transportation etc. In addition, the capabilities and flexibility

of mobile and embedded devices are steadily increasing to incorporate various machine

101

learning techniques, which in turn pose serious challenges and design limitations such as

stringent area, memory and power limitations.

Machine learning can be broadly classified into two categories: supervised

learning (classification) and unsupervised learning (clustering). In supervised learning,

pre-labeled datasets are used to train a system to perform specific task whereas in

unsupervised learning, the system is trained by clustering the data into different classes

without using pre-labeled datasets. However, supervised learning is popular due to the

availability of large volume of data. As the volume of data size increases, the computing

time to train a system increases. In order to handle such enormous amount of data, the

machine learning algorithms are becoming more complex, requiring significant

processing power. A typical general-purpose processor is inefficient to cater for such

substantial processing power and the existing machine learning algorithms (currently

suitable for processor-based design only) are not executable as is on embedded platforms.

Consequently, some kind of new hardware architectures is required to support machine

learning applications on mobile and embedded devices.

Our main objective is to provide optimized hardware architectures and techniques

to accelerate machine learning applications on embedded mobile devices. In this chapter,

we focus on Support Vector Machines (SVM), which is one of the most popular

classification algorithms in machine learning applications. The hardware accelerator is

optimized to accelerate classification methods by providing a dedicated hardware design

and customizing the execution overhead compared to general-purpose processor, thus

improving area, power and speedup performance. We make the following contributions

in this chapter: generic, parameterized and scalable hardware accelerator for support

102

vector machines, unique optimization techniques including pre-fetching, burst transfer,

parallel systolic array configuration, adaptable and efficient system-level design suitable

for different fields of machine learning applications.

Support Vector machines is a classification algorithm developed by Cortes and

Vapnik in 1995 [28]. It involves training and testing process [24]. During the training

phase, the SVM classifier constructs a hyper-plane separating two different classes of

datasets. In geometry, a hyper-plane is a subspace (in our case, a 2D-plane) with (n-1)-

dimensions compared to n-dimensional ambient space. The margin width of the hyper-

plane determines the distance measure of classification between two separate classes.

Higher the margin width implies higher accuracy of data classification. Margin width of

the hyper-plane can be increased using mathematical optimization techniques [137] such

as convex optimization [23]. Furthermore, increasing the margin width of the hyper-plane

using convex optimization and efficient techniques to solve convex problems is

convenient for SVM classifier to handle large compute-intensive and data-intensive

applications; however, a general-purpose process is incapable to cater for high processing

power requirements. In addition, the formulation of the SVM utilizes the mathematical

kernel techniques [94], which further enable the SVM classifier to classify non-linearly

separable data. During the testing phase, the new unclassified data are passed to the

trained SVM model utilizing the sign verification step to determine the respective class.

For real-world applications, the characteristics of the datasets vary based on

different factors. In order to compensate for different applications, the classifier must be

generic to accommodate these variations in the datasets. Therefore, SVM provides 3 most

popular mathematical kernels (linear, polynomial, Gaussian kernel) suitable for linearly

103

separable and non-linearly separable data. Choosing the right mathematical kernels and

the specific parameters determined by cross-validation method [24] can help to achieve

high accuracy results. Furthermore, the convex optimization formulation is solved by

using the sequential minimal optimization approach. This approach chooses two data

point at any instance to determine the direction of the gradient descent to find the minima

value. Using the minima values, the convex optimization maximizes the margin width on

the hyper-plane. Since, this is an iterative process; hardware design can take advantage of

parallelism inherent in the SVM algorithms. Also, a hardware accelerator would avoid

the execution overhead such as fetching and decoding as in processor-based design,

thereby improving the overall area, power and speedup performance. Therefore, it is

imperative to develop dedicated hardware architecture to make use of SVM iterative

process to accelerate machine learning applications.

4.2 RELATED WORK

Table 1 Literature review

Ref Contribution Platform
Resources

Utilization
Acc

Speedu

p

Po

w

[85]

Systolic chain of PEs, pre-
computed support vectors

FPGA, Xilinx
Virtex-5

5162-slices, 64-DSP,
329kB-mem, 74-
BRAM

88
%

~33 fps
N/
A

[138]

Training phase with
reconfig. Arch-
DT,SVM,ANN

FPGA, Xilinx
Virtex-7

1062-slices, 12-DSPs
N/A

42.79-
66.71x

N/
A

[43]
Training-Matlab, Decision
boundary condition-HW

Matlab, Xilinx
xc5vlx110t

2010-33360:slices, 0-
515:DSP, 27-63:IOBs

N/A N/A
1.4-

2

[139]

Multiplier-less kernel-
systolic array, offline
training MATLAB

Matlab N/A
N/A N/A

N/
A

[48]

Co-processor design, SMO
decomposition

FPGA, Xilinx
Virtex-5

27735-37549LUTs,
32-128DSP, 16-
32BRAM

99.1
2

18-21x
10
W

Propose

d design

Systolic array – kernels,
solver, testing

FPGA, Xilinx
Virtex-6

8390-slices, 236-
DSP, 118-BRAM

95
%

107x
3.4
2

Recently, hardware acceleration using FPGAs has gained interest due to ease of

programmability. We surveyed the existing research work on hardware support for SVM

104

classifier. In this regard, we investigated ways to utilize FPGAs to design, develop, and

implement high-dimension, large-scale data classifier. From the survey papers

[140][141][142], we have extracted the related existing research work based on systolic

array configuration.

The paper [85] presents first steps towards realization of generic systolic chain of

processing elements (PEs) for SVM. The performances of the systolic chain of PEs are

evaluated for image and video applications. The paper presents architecture details of

distributed pipelined architecture, efficient management of memory and data transfers,

fan-out complexity of routing input samples to systolic array modules. Systolic chain of

computing elements are designed and implemented for SVM decision boundary

condition. We believe extending the work to SVM training would result in considerable

improvement in terms of speedup, due to the inherent parallelism of SVM training

process.

In [138], an ensemble type of architecture was presented to implement decision

trees, neural networks and SVM and evaluated using 18 benchmark datasets. The authors

provide a comparative analysis in terms of speedup performance for various machine

learning algorithms. The analysis can be used to identify the similar computing procedure

used by many machine learning classifier. Identifying the similar computing procedure to

perform classification might provide insights to choose the critical computations for

systolic array implementation. Thereby, the most time consuming computations can be

accelerated by instantiating multiple systolic arrays.

An FPGA-based design was proposed for decision boundary conditions using

multiplier-less kernel implementation technique for image processing in [43]. In this

105

case, only the classification step of the SVM was implemented using the proposed

multiplier less techniques to reduce power. However, the training process of SVM was

computed offline using MATLAB, which in many cases requires the hardware support to

improve the computational time. The support vectors obtained from the MATLAB was

stored in the FPGA’s internal memory and utilized for decision boundary conditions. In

these scenarios, incorporating the multiplier less kernel technique might be useful in

order to reduce power but which in turn might add execution time for the overall decision

conditions. Extending the multiplier-less kernel approach to the training process on

hardware might lead to additional execution time at the cost of overall training

performance. The power consumption was reported in the range of 1.479 to 2.051W for

the multiplier-less kernel implementation.

In [139], the author present multiplier-less kernel operation for SVM using

software based systolic array on Matlab. Using Matlab, the computed α values for

support vectors are virtually stored in the systolic array chain for test samples. The

processing elements (PEs) mainly consisting of adders and sub tractors are used to reduce

the computational complexity of matrix multiplications and presented a reduction from

O(n3) to O(n). Based on the presented reduction in computational complexity, it is

evident that hardware design for systolic array seems to improve the performance

significantly for large-scale datasets.

In [48], a parallel implementation of FPGA as coprocessor was proposed for

SVM. With this design, the speedup obtained was around 20x compared to CPU design

consuming 10W power. Although, the design utilize PCI and FPGA as a co-processor to

106

parallelize compute-intensive arithmetic operations, it is not suitable for mobile

embedded platforms, which has stringent area and power restrictions.

Based on the aforementioned existing work, implementation techniques are

limited to part of the SVM’s process. In most cases, the support vectors are pre-computed

and used for decision boundary conditions computation using systolic arrays. Therefore,

our proposed work in this paper aims to extend the systolic array to the complete SVM

training and testing process (including mathematical kernels, convex optimization and

boundary decision conditions). Extending these concepts, can help reap the actual benefit

inherent to parallel processing capabilities of FPGAs and SVM. In the following section,

we provide the system-level details and experimental platforms used to design parallel

systolic array for support vector machines.

4.3 Design Approach

In our design, the proposed hardware architecture is implemented using

hierarchical and modular-based approaches, in which the SVM algorithm is categorized

into 3-level of abstraction. The higher-level involves training and testing process of

SVM, followed by mathematical optimization level at the second level. The lower

abstraction level includes the fundamental components for arithmetic and vector

computations. The aforementioned abstraction structure facilitates resources sharing at

different level. The components for arithmetic and vector computations are implemented

using the single-precision floating point units to optimize for area and power without

compromising the accuracy of the results. These operators are provided by Xilinx IP core

libraries.

107

4.3.1 Experimental Platform

Our proposed SVM accelerator IP is developed using Xilinx’s Virtex family

FPGAs [103]. Specifically, virtex-6 XC6VLX240T-1FFG1156 FPGA [143][105], which

consists of high-performance logic slices (37680 slices) with embedded hardware IP

resources such as 748 DSP48E1 slices, 512MB DDR3-SDRAM and soft microprocessor

capabilities.

For our experiments, the DSP slices are used efficiently to improve the parallel

processing capabilities and logic slices provides a foundation for programmable platform

alternative to ASIC design. Soft microprocessor, i.e., Micro-blaze, is used for handling

the control signals between customized-IP for SVM, UART serial ports, AXI

communication protocols, DDR3-SDRAM, AXI timers and Interrupts [144], [117].

The RTL is design using mixed hardware description language (both VHDL and

Verilog) [145] and as proof-of-concept, we have also developed embedded software

algorithm in C++. Xilinx Platform Studio (XPS) [146] [147] [148] is used to build the

base system-level design and the RTL is designed and evaluated using Xilinx ISE and

ISim tools [149] [150] [151]. The embedded software is developed using Xilinx Software

Development Kit (SDK), which is based on Eclipse open source standard. Our

experimental results are also compared with the baseline python program results (Scikit-

learn), to verify the correctness of the results. The overall system-level architecture is

illustrated in the fig. 4.1.

4.3.2 Framework of Embedded Hardware

Micro-blaze is a 32-bit soft processor based on RISC architecture optimized by

Xilinx for efficient FPGA implementation and available as part of Xilinx embedded

108

development kit (EDK) [152] [153] [154]. For our experiments, we have selected the area

optimization, after synthesis, which translates to 5 DSP48E1 slices and 38 BRAM

operating at 100MHz. The micro-blaze initiates the AXI timer [120] and data pre-

fetching process using AXI Master Burst transfer [155].

The automated design to access datasets considered for the current experiments

[122] are stored in the block ram memory [106]. Initially, the data is passed through

mathematical kernel block to distinguish linearly separable and non-linearly separable

data sets. Then, the output matrix of the mathematical kernel is passed through the

convex optimization solver as shown in the fig. 2. The solver finds the minima value and

stores the corresponding α and bias values in the DDR3 using AXI master burst

controller and at the same time signaling the micro-blaze to indicate the training process

for SVM is completed.

The new data is then passed through the testing block to classify the data into

respective classes. Although, the training process for SVM is compute intensive and time

consuming, the testing is process is data-intensive depending on volume of the new

incoming data. The major step for testing process involves sign verification step and

sorting the data into assigned class. Therefore, in order to fulfill both the requirements for

compute-intensive training process and data-intensive testing process, we have

implemented parallel systolic array configuration for SVM as shown in fig. 2.

Systolic arrays can effectively make use of SVM’s massive parallelism of

compute-intensive and data-intensive training and testing process. Especially, with

efficient implementation on FPGA devices, the systolic array can achieve better speedup

performance compared to fixed modules or general-purpose architecture designs.

109

Our proposed design for systolic array implementation for SVM is favorable for

the following 3 reasons.

• First, the high demand for processing power for SVM can be distributed among

individual clusters of a systolic array.

• Second, our design is parameterized and scalable thus; the FPGA can be

configured to occupy significantly less area for specific applications.

• Third, the framework of shared-resources is the most appealing aspect when

considering the mobile embedded devices.

Taking into account of the aforementioned advantages, we performed experiment

on our parallel systolic array design by varying the number of instances, execution

overhead including single-instruction stream, multiple-data stream (SIMD) and multiple-

instruction stream and multiple-data stream (MIMD) and results are presented in the next

section.

To evaluate the accuracy and performance of our embedded design, we performed

experiments using two benchmark datasets from UCI machine learning repository [121].

The two datasets are as follows: Ionosphere datasets [122] and Wisconsin breast cancer

diagnostic dataset [21]. Ionosphere dataset consists of radar data obtained by using 16

high-frequency antennas. The returned complex electromagnetic signal is processed using

an autocorrelation function to determine the presence of any structures in the earth’s

ionosphere. This datasets consists of 351 instances with 34 attributes and suitable for

binary classification. Cancer datasets is obtained by determining the features of a cell

nucleus of either malignant or benign cancer cells. Cancer dataset represents the

characteristics of cell nuclei using 30 different attributes and 569 instances.

110

Figure 4.1: Three high-level stages of SVM algorithm

4.4 Experimental Results

We performed experiment to evaluate the speedup performance and feasibility of

our proposed design. The speedup performance is measured in real-time using the AXI

Mathematical

Kernels

Convex

Optimization

Testing /

Classification

USER IP

CONTROLLER

Systolic arrays – n instances

Unified BRAM Module

n:1 MUX

Mathematical

Kernels

Convex

Optimization

Testing /

Classification

Mathematical

Kernels

Convex

Optimization

Testing /
Classification

Base-level - RTL design

Middle level – Memory Map Interconnect

AXI

Master Burst

Memory

Controller
Off-chip

DDR3-SDRAM Rd/WR Addr/Data Channel

Top-level

SYSTEM – LEVEL ARCHITECTURE

111

timer operating at FPGA’s clock frequency at 100MHz. The speedup for each systolic

array is calculated using the equation (1) as micro-blaze execution time over embedded

hardware execution time.

Figure 4.2: Speedup vs. Data size

Figure 4.3: Speedup vs. Data size

112

Table 16. Execution time, speedup and accuracy for Cancer dataset – Linear

Mathematical Kernel

Train

Set

Micro-blaze

Exec Time (s)

HW 1-inst Exec

Time (s)

Speedup HW 2-inst

Exec Time (s)

Speedup Acc (%)

10 % 161865353 7924113 20.43 6526249 24.80 82.76

20 % 325818822 23388548 13.93 13290771 24.51 92.85

30 % 659149652 34461989 19.13 16781132 39.28 91.03

40 % 1341043549 34498506 38.87 18081648 74.17 91.54

50 % 2117706879 39129865 54.12 24178951 87.58 92.26

60 % 3105162265 56985371 54.49 31804238 97.63 91.68

70 % 4296218440 70827842 60.66 40131605 107.05 92.47

80 % 5772976007 77416316 74.57 68077162 84.80 91.32

90 % 7557691210 103336947 73.14 73204946 103.24 92.96

Parameters: C = 2, degree (d) = 2, gamma (γ) = 0.005, Maximum # of iterations = 1000

The accuracy of the SVM classifier is a measure of the total number of correct

data classification divided by the total number of test data, as given in the equation (2).

The datasets are partitioned evenly to evaluate the accuracy of SVM classifier and the

results are compared with the baseline results from open-sources python code [132].

Partitioning the datasets for training and testing purposes provided us a method to

interpret the effect of implementing different number of systolic array and the overall

efficiency of the convex optimization module.

113

Table 17. Execution time, speedup and accuracy for Ionosphere dataset – Linear

Mathematical Kernel

Train

Set

Micro-blaze Exec

Time (s)

HW 1-inst Exec

Time (s)

Speedup HW 2-inst Exec

Time (s)

Speedup Acc (%)

10 326247324 10468579 31.16 10026519 32.54 64.51

20 994127844 30749019 32.33 28474615 34.91 63.21

30 2014535135 52676038 38.24 49606272 40.61 66.39

40 3562645809 86721348 41.08 82743009 43.06 59.8

50 5251044535 102352939 51.30 80376897 65.33 70.36

60 7620470915 138372431 55.07 100358129 75.93 84.06

70 10483075447 168745617 62.12 146884860 71.37 98.45

80 13975767881 218558954 63.95 184837167 75.61 98.45

90 19475226254 316911548 61.45 247726125 78.62 96.29

Parameters: C = 2, degree (d) = 2, gamma (γ) = 0.005, Maximum # of iterations = 1000

Table 18. Resource utilization

Number of BRAM Number of DSP48E1 slices Number of occupied slices

118
236 8390

Table 1 and 2 presents the embedded software and hardware execution time. The

embedded hardware is measured for 2 parallel systolic array instances. We varied the

number of instances in the range of 1, 2, 4, 8 and found out that 2 systolic array was

sufficient to accelerate the SVM classification for our specific datasets. The table 1 & 2

present the results for Linear kernel, however a brief comparison of speedup for the 3

mathematical kernel (linear, polynomial, RBF) are shown in the figure 4.3 and 4.4.

Figure 4.7-4.10 demonstrates the impact of number of instances with respect to hardware

execution time and speedup for cancer datasets. The impact of systolic array was

relatively low for polynomial kernel as compared to other linear and RBF kernel and it is

evident from the figure 4.8-4.10.

114

�fWW\bf = �������� ������
�� �
�� ��¡���� ������
�� �
�� (25)

¢ggbZ[g�
d%, ��
, ��� =
�� ∑ ¤��
 == ��� ∗ 100��o�
2w (26)

Figure 4.4: Graph of hardware execution time vs. data size for 1 and 2 instance – Cancer

datasets, Linear Kernel

0

20000000

40000000

60000000

80000000

100000000

120000000

1707 3414 5121 6828 8535 10242 11949 13656 15363

H
a

r
d

w
a

r
e

 e
x

e
c
u

t
io

n
 t

im
e

 (
c
lo

c
k

c
y

c
le

s
)

Data Size (Number of samples, n x Number of dimensions, m)

GRAPH 1: Hardware execution time vs Data size

For default SVM vs Parallel systolic array (1 & 2 instances, Cancer dataset - Linear kernel)

SVM-Linear 1 instance SVM-Linear 2 Instances

115

Figure 4.5: Graph of hardware execution time vs. data size for 1 and 2 instance – Cancer

datasets, Polynomial Kernel

Figure 4.6: Graph of hardware execution time vs. data size for 1 and 2 instance – Cancer

datasets, RBF Kernel

0

100000000

200000000

300000000

400000000

500000000

600000000

1707 3414 5121 6828 8535 10242 11949 13656 15363

H
a

r
d

w
a
r
e

 e
x

e
c
u

t
io

n
 t

im
e

 (
c
lo

c
k

c
y

c
le

s
)

Data Size (Number of samples, n x Number of dimensions, m)

GRAPH 2: Hardware execution time vs Data size

For default SVM vs Parallel systolic array (1 & 2 instances, Cancer dataset - Polynomial kernel)

SVM-Poly 1 Instance SVM-Poly 2 Instances

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

450000000

500000000

1707 3414 5121 6828 8535 10242 11949 13656 15363

H
a

r
d

w
a

r
e

 e
x

e
c
u

t
io

n
 t

im
e

 (
c
lo

c
k

c
y

c
le

s
)

Data Size (Number of samples, n x Number of dimensions, m)

GRAPH 3: Hardware execution time vs Data size

For default SVM vs Parallel systolic array (1 & 2 instances, Cancer dataset - RBF kernel)

SVM-RBF 1 Instance SVM-RBF 2 Instances

116

Figure 4.7: Graph of speedup vs. data size for 1 and 2 instance – Cancer datasets, Linear

Kernel

Figure 4.8: Graph of speedup vs. data size for 1 and 2 instance – Cancer datasets,

Polynomial Kernel

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1707 3414 5121 6828 8535 10242 11949 13656 15363

S
p

e
e

d
u

p

Data Size (Number of samples, n x Number of dimensions, m)

GRAPH 4: Speedup vs Data size

For default SVM vs Parallel systolic array (1 & 2 instances, Cancer dataset - Linear kernel)

SVM-Linear 1 Instance SVM-Linear 2 Instances

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

1707 3414 5121 6828 8535 10242 11949 13656 15363

S
p

e
e

d
u

p

Data Size (Number of samples, n x Number of dimensions, m)

GRAPH 5: Speedup vs Data size

For default SVM vs Parallel systolic array (1 & 2 instances, Cancer dataset - Polynomial kernel)

SVM-Poly 1 Instance SVM-Poly 2 Instances

117

Figure 4.9: Graph of speedup vs. data size for 1 and 2 instance – Cancer datasets, RBF

Kernel

Table 19. Execution time and speedup for Cancer dataset – with 2 instances

Hardware execution time (clock cycles)

2 Instances

Speedup w.r.t Micro-blaze

Software

Speedup w.r.t 1 instance

hardware

Lin Poly RBF Lin Poly RBF Lin Poly RBF

6577614 131620218 49506714 24.61 2.75 14.13 1.20 0.94 0.93

13069473 139466677 102632928 24.93 12.19 17.50 1.79 1.00 0.92

16710370 154645119 112085381 39.45 29.26 21.76 2.06 1.02 1.00

20149006 193305613 121217907 66.56 40.23 36.89 1.71 0.98 1.05

25688549 224863725 136752785 82.44 54.95 55.67 1.52 1.04 1.09

31937629 274041069 169782113 97.23 72.18 60.70 1.78 1.01 1.31

48320738 330319529 273059077 88.91 60.20 57.42 1.47 1.06 1.23

68624072 374548485 343348766 84.12 57.91 66.57 1.13 1.11 1.12

76708889 458258150 453057020 98.52 47.95 55.59 1.35 1.05 1.02

Average Speedup 67.42 41.96 42.91 1.56 1.02 1.08

As mentioned, in the previous section, the parameters which determine the

orientation of the hyper-plane are set as C=2, degree of the polynomial as 2 and a gamma

value of 0.05 with a maximum number of iteration of 1000 for convex optimization are

selected. It is observed that as the number of available data for training the SVM model

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

1707 3414 5121 6828 8535 10242 11949 13656 15363

S
p

e
e

d
u

p

Data Size (Number of samples, n x Number of dimensions, m)

GRAPH 6: Speedup vs Data size

For default SVM vs Parallel systolic array (1 & 2 instances, Cancer dataset - RBF kernel)

SVM-RBF 1 Instance SVM-RBF 2 Instances

118

increases, the accuracy also increases thus increasing the execution time. Based on the

systolic array implementation, the execution time is reduced significantly and also

number of occupied slices is reduced due to resources sharing facility. Using a single

instance systolic array, a speedup of 74 is achieved, however, with the 2-instance systolic

array; a speedup of 107 was observed compared to the embedded software architectures.

Table 20. Execution time and speedup for Cancer dataset – with 4 instances

Hardware execution time (clock cycles)

4 Instances

Speedup w.r.t Micro-blaze

Software

Speedup w.r.t 1 instance

hardware

Lin Poly RBF Lin Poly RBF Lin Poly RBF

6621474 136250557 49637011 24.45 2.65 14.09 1.20 0.91 0.93

13301979 142121941 103138928 24.49 11.96 17.41 1.76 0.98 0.92

16711440 157291069 112237912 39.44 28.77 21.73 2.06 1.01 1.00

20531068 198159327 121679926 65.32 39.24 36.75 1.68 0.96 1.05

25645414 226679427 136976330 82.58 54.51 55.57 1.53 1.03 1.09

32312715 281685159 170012310 96.10 70.22 60.61 1.76 0.98 1.31

40686304 342195776 274202777 105.59 58.11 57.18 1.74 1.02 1.22

68652288 371140304 344115110 84.09 58.44 66.43 1.13 1.12 1.12

73692686 462429729 457586208 102.56 47.52 55.04 1.40 1.04 1.01

Average Speedup 69.40 41.27 42.76 1.58 1.00 1.07

Table 21. Advanced Extensible Interface Master Burst Transfer configuration

IP Configurations Parameters

Maximum Burst Length 256

Address Pipeline Depth 14

Master Length Width 20

Native Data Width 32

119

Table 22. Execution time and speedup for Cancer dataset – with 8 instances

Hardware execution time (clock cycles)

8 Instances

Speedup w.r.t Micro-blaze

Software

Speedup w.r.t 1 instance

hardware

Lin Poly RBF Lin Poly RBF Lin Poly RBF

6671329 142512261 49690130 24.26 2.54 14.08 1.19 0.87 0.93

13361585 144867026 103227704 24.38 11.73 17.40 1.75 0.96 0.92

16817152 163123213 112488198 39.20 27.74 21.68 2.05 0.97 1.00

20623317 200390070 122103503 65.03 38.80 36.63 1.67 0.95 1.04

25779519 228932812 137639892 82.15 53.97 55.31 1.52 1.02 1.09

32478974 286973507 170022001 95.61 68.93 60.61 1.75 0.96 1.31

41046446 343419034 275560187 104.67 57.91 56.90 1.73 1.02 1.21

69248797 376423788 345679309 83.37 57.62 66.13 1.12 1.10 1.11

74076625 484891351 457607716 102.03 45.32 55.04 1.40 0.99 1.01

Average Speedup 68.96 40.51 42.64 1.57 0.98 1.07

4.5 Chapter Summary

In this chapter, we introduced efficient and unique embedded hardware

architecture with parallel systolic array configuration to accelerate the convex

optimization-based support vector machines for data classification in machine learning.

Our embedded hardware architectures are adaptable, generic and scalable. Hence,

without modifying the internal architecture, our embedded designs can be utilized for

different field of machine learning applications involving data classification. We

discussed the implementation details for different number of systolic arrays for hardware

architecture. We performed experiments to illustrate the feasibility of scalability of the

accelerator modules suitable for large-scale real-time data processing.

120

CHAPTER 5

OPTIMIZED HARDWARE ARCHITECTURE FOR DEEP NEURAL

NETWORKS

Deep learning is a subset of Artificial Intelligence (AI), which aims to build smart

systems capable of performing tasks that typically requires human intelligence. The smart

systems utilize statistical and mathematical approaches to analyze data to perform a task

without human interruption. Due to the accumulation of large volume of data over the

past decade, the time required for deep learning applications to perform a task has

increased exponentially. In order to improve the execution time for deep learning

applications, various software optimizations and hardware support has been proposed.

The scope of this research work is to examine the feasibility of a programmable device to

aid the deep neural network acceleration. Our previous work on machine learning

applications has demonstrated significant improvements in terms of speedup performance

for support vector machines. In this research work, we will focus on hardware support for

deep neural networks using programmable logic devices.

Hardware platforms such as ASIC, CPU, GPU and FPGAs have been integrated

to build a neural network, among which GPUs and FPGAs play major role for

acceleration. However, despite the high cost and excessive power consumption, GPUs

dominate the acceleration for neural networks. Our objective seeks to provide a

customized FPGA-based architecture to support deep neural networks for power-efficient

design. In this research, we aim to illustrate the design methodologies to leverage the

flexibility & power efficiency of a programmable device, present RTL-level details and

system-level architecture and lastly examine the potential gains in terms of energy and

121

speedup performance. Experiments are performed using benchmark datasets for medical

diagnosis and radar data analysis.

5.1 Introduction and Motivation

Recent breakthroughs in the development of Neural Networks (NNs) have led to

state-of-the-art performance for various deep learning applications [156][157][158].

Neural Networks have been among the most powerful and widely used techniques in

cognitive applications. DNNs have outperformed classical techniques and are found in a

wide range of applications such as Aerospace & defense, financial services, healthcare,

retail, IT & telecom sector etc [159][160][161][162]. However, Deep Neural Network-

based designs are complex and computationally intensive. The complex topologies of

DNNs with many layers and numerous of parameters have escalated the cost of power

consumption. In order to deploy these technologies in mobile devices, area and power are

the major constraints and pose a serious challenge to integrate into portable embedded

devices.

As the advancement in silicon technology is reaching its theoretical limits, any

improvements on typical architectures is unable to keep pace with the computational

requirements of deep learning. Hardware acceleration plays a crucial role for real-time

operations. In 2010, Microsoft research group [3] proposed augmenting CPUs with

configurable platforms to enable deep learning applications. Eventually in 2016,

Microsoft incorporated these configurable platforms only for deep learning inference.

Despite the high cost, fixed architecture and high power consumption, GPUs dominate

the acceleration for training a deep learning model.

122

As large scale applications (such as scientific computing, social media and

financial analysis) gain prominence, the computations and storage demands of modern

systems have far exceeded the available resources. It is expected that, in the next decade,

the amount of information managed by world-wide data centers will grow 50-fold, while

the number of processors will increase only by 10-fold. In fact, the electricity

consumption of just the US data centers have increased from 60 billion kWh in 2016 to

73 billion kWh in 2020 [163]. It is clear that, a raising performance demands will soon

outpace the growth in resource budgets; hence, over provisioning the resources alone will

not solve the conundrum that awaits the computing industry in the near future.

In this research work, we introduce energy-efficient FPGA-based hardware

architecture for DNN acceleration with on-chip high speed data transfer technique,

scalable IP modules to handle large-scale data and a generic design suitable for various

applications. We present the systematical approach to explore tradeoff analysis for area

and power cost by varying the number of parallel processing elements and minimizing

the memory access latency.

This chapter is organized as follows: In sub-section 5.2, we present the necessary

details of deep neural network algorithm and existing work related to FPGA accelerators.

In sub-section 5.3, we present the comparative analysis of various platforms and

evaluation plan for steps considered to develop accelerators. Our experimental results and

analysis are reported and discussed in sub-section 5.4. In the last sub-section, we

summarize our work and present concluding remarks for the chapter.

Our objective is to provide customized & optimized hardware architectures to

support and accelerate deep neural network on embedded platforms considering the

123

associated constraints of embedded platforms. We provide the necessary chip-level

details and efficient data accessing techniques to support deep learning applications on

portable embedded devices.

5.2 Background Study

Neural networks are continuously evolving [164][165][166] due to various

factors; among which the two main reasons for such a rapid advancement of neural

networks are due to the availability of large-volume of annotated data and the

improvements in the silicon technology to support immense computing power

requirements. In this section, we present the background study for deep neural network

and explore the existing work to accelerate DNNs using FPGA. In the subsequent

section, we present a comparative analysis among different available platforms and

tradeoff-advantages relative to specific computing platform.

5.2.1 Deep Neural Networks

Deep Neural Networks (DNNs) are typically a set of stacked layer of networks. In

general, DNN consists of input layers, L-hidden layers and an output layer. Each layer

consists of n-neuron with weights, bias and sample feature as input. Input layers are

parameterized to receive high dimensional data and feeds forward to consecutive hidden

layers. The parameters of individual neuron, weights and bias values, are evaluated using

mathematical optimizations such as Stochastic Gradient Descent (SGD). SGD are

formulated to reduce error function by adjusting the weights and bias values. The errors

are back-propagated to the first layer and iterated multiple times until a minimum value is

reached for error function. This iterative process of adjusting the weight and bias values

is called as training. Once a meaningful set of parameters are obtained, the inputs are

124

passed through the output layer to make useful prediction and the process is called as

inference.

5.2.2 Literature Review

We surveyed the existing research work on hardware support for the DNN

classifier. In this regard, we investigated ways to utilize Field Programmable Gated

Arrays (FPGAs) to design, develop, and implement high-dimension, large-scale data

classifier. From the survey papers [167][168][169], we have extracted the following

closely related existing research work.

In [170], the authors present 3 stage pipelined Deep Learning Accelerator Unit

(DLAU). The three stage pipelined architecture consists of tiled matrix multiplication

unit, part sum accumulation unit and activation function acceleration unit. The purpose of

DLAU is to scale up accelerator architecture for large-scale deep learning networks using

FPGAs as the hardware prototype as well as to maintain low power cost. The presented

results achieves a speedup of 36.1x compared to Intel Core2 processor and a power

consumption of 234mW. DNN are trained using Matlab and the corresponding

parameters are used for inference which is implemented on Zynq Zed board FPGA.

Although, extending the FPGA implementation to DNN training could further improve

the speed performance. It should be noted that further detailed comparison for speedup

relative to network and tile size would be highly recommended. With power analysis, the

paper illustrates the power consumption for individual pipeline stages and memory access

module with a total consumption of 234mW.

The paper [171] presents one of the critical and important steps for translating a

design into hardware modules. The paper highlights the inefficiency of existing tools

125

such as HLS, OpenCL and suggests a new RTL complier to efficiently allocate the

resources for maximum throughput and performance. Manual RTL translation is time

consuming and requires hardware skills. To address the inefficiency gap between high-

level synthesis tools and the manual RTL translation, the authors present a scalable

solution to achieve near optimal RTL implementation. The proposed compiler is referred

to as ALAMO, is optimized based on various design strategy to automatically set

modular and scalable modules to accelerate the operations of deep learning. Although, a

generic modular implementation for an efficient data transfer would be suitable for

continuously evolving DNN architecture but the current performance of HLS or OpenCL

tools must be scrutinized for in-depth analysis.

In the paper [172], the authors proposed an alternative methodology, based on

scalable hardware architecture and circuit design using stochastic based computing

principle and stream-mode compute, to efficiently implement CNN on FPGA that

outperforms GPUs in terms of power consumption and performance. The designs were

evaluated using Virtex-6 and power consumption is reported at 3.61W. One of the

concerns that rises is that when a stochastic based approach is used, extracting and

identifying the parameters that has majority contribution for a given network would be

useful, i.e., a quantifiable factor represented using an equation.

The paper [173] proposed a FPGA-based accelerator for DNN using Xilinx Zynq-

7020 FPGA and evaluated using MNIST digital identification dataset to achieve up 96%

recognition rate. It should be noted that the proposed design is limited to DNN inference.

No details or implementation are specified for DNN training but the weights parameters

are stored in ROM in advance for inference. The memory configuration has to be

126

addressed in the paper. Some of the implementation seems trivial in terms of DNN

topology. Since, most of DNN has extremely complex structural topology and the

proposed implementation lacks the scalability aspect of an FPGA design.

In [174], FPGA-based accelerator is presented for CNN inference. The proposed

design is based on INT8-2 compute approach using an adaptive logic module to

accelerate low-precision inference. It would be of interest in regards to training to further

monitor variation in accuracy. Since the approach seems to provide a potential area

optimization but an in-depth analysis would be interesting for tradeoff analysis.

Table 23: Literature review for neural networks

Ref Contributions Platforms
Resource

utilization

Acc.

(%)
Speedup

Pow

(W)

Our

work

SOC Ensemble
architecture IPs, On-

chip training and
inference

Virtex-6

7500-10870-
slices, 107-
143-DSP,

118-BRAM

91 61x 3.6-4.9

[40]

Multi-layer-perceptron
and radial basis ANN.
Training phase with

reconfigurable arch. for
DT, SVM, ANN

Virtex-7
1062-slices,

12-DSPs
NA 66.71x NA

[170]

3-stage pipeline
accelerator unit, tiled

mat-mul, training using
MATLAB, Inference

using FPGAs

Intel
processor,
Zynq Zed

220-DSPs,
280-BRAM,
53200-LUTs

NA 36.1x 1.814

[171]

Addresses the
inefficiency of high-level

synthesize tools, RTL
complier to allocate max
throughput & perf, near

RTL implementation

Altera
Stratix-V
GXA7,

OpenCL

256-DSPs,
2330-BRAM,
121k-Logic

80 1.9x 19.5

[172]
Stochastic based

computing principle &
stream-mode compute

Virtex-6 Freq-200MHz 87
899.13
GOPS

3.61

[173]
Inference using FPGAs,
pre-determined weight

vectors in ROM
Zynq 7020

12-DSPs,6-
BRAMs,

38899-Luts
96 NA NA

[174]
Low-precision inference
using FPGAs, INT8-2
using adaptive logic

Arria 10,
Stratix 10

69%-DSP,
30%-ALM,
19%-BRAM

71
200-

GOPs
GPU-
300

127

[175]

One single-computing
layer for fully-connected

computation fabric, 16-bit
FP, hard-coded network

weights, on-board
inference only

Virtex-5
XC5VLX,
ZynQ-7000

900-DSPs,
545-BRAMs,
218600-LUTs

98
15.9k
FPS

NA

[176]

FPGA accelerator
optimized for throughput,
Scalable framework with

four-level parallelism

Intel i7,
Virtex-7
VX690T

3600-DSPs,
1470-BRAMs,
433200-Luts

99 14.84

88-
CPU,
225-
GPU,
25.6-
FPGA

[177]
Latency-driven, weights

reloading, SDF
transformation, HLS

ZynQ
XC7Z045

900-DSP,
545-BRAM

98 1.49x NA

[178]

Dynamic programming,
multi-CLP accel.,

pipeline, C++ design
entry

Virtex-7
VX485T,
VX690T

3600-DSP,
2940-BRAM,

84%-LUT
NA 2.3x 11.2

[179]

2D systolic array
automation flow for on-
board inference only, 8-

16 FP

Arria 10 GX
1150

1518-DSP,
2713-BRAM,

83%-LUT
98 NA 20.75

[180]

Numerically
characterizing loop opti.

Technique, tradeoff
analysis relative to

memory latency

Intel Arria
10

100%-
DSP,70%-
BRAM,38-

LUT

NA 5.5x 30.44

[181]
Scalable and flexible

parallel PEs, quantization,
on-chip buffers

ZynQ
XC8Z020,
XC7Z045

220-DSPs,
140-BRAMs,
56%-LUTs

NA 6x 24.1

[182]

Co-Processor design,
parallel 2D primitives,

off-the-shelf PCI
implementation

Virtex-5
LX330T

192-DSP,
324-BRAM

NA 31x 0.61

[183]

Int. factorization, CNN
complier translates high
N/W specs to parallel

microprogram.

Virtex-5
SX240T

1056-DSPs,
516-BRAM,
48-bit fixed

point

- 6.5x 1.14

[184]
Custom processing tiles,

fast stream memory
interface

Virtex-6
VLX240T

100% DSP,
416-Mem

- 133.6x 14.7

[185]
NoC SW config., mutli-
bank memory modules,
32-bit FP C design entry

Stratix-V
GSM
D5

1590-DSP,
2014-BRAM

- 3x 7.15

Based on the above mentioned existing work, we aim to introduce novel,

customized, and optimized FPGA-based hardware architecture for deep neural networks

on embedded platforms. Our architecture aims to address the major constraints associated

128

with the embedded platforms. The area, power consumptions, design reconfiguration,

time-to-market are the major constraints associated with the embedded platforms. We

also introduce lean and compact embedded software architecture for DNN, which is

designed to fit into the available resources of the embedded microprocessor on chip. The

experimental results are encouraging and indeed show a great potential in utilizing

FPGA-based systems to support and accelerate deep learning applications, specifically on

embedded platforms. The compact size of our proposed architectures as well as the

ability of our embedded designs to dynamically train from the unstructured datasets,

further enhance the potential of implementing deep learning on embedded devices.

5.3 Design Approach and Development Platform

In this section, we present the details of available platforms to accelerate DNN,

provide an insight on the current technology trend and the steps to develop acceleration

architecture of a programmable device.

5.3.1 Comparison of Different Platforms

In this section, we discuss various means of computing platforms suitable for

different application domains. For instance, most of the computations of neural networks

involve floating point operations and matrix computation. The execution flow and

performance comparison on two popular platforms GPU, FPGA are as follows:

• GPU: GPUs are designed to accelerate certain operations such as multiple-and-

accumulate (MAC) operations. The architecture is based on SIMD (single

instruction multiple data) architecture to support large number of MAC, matrix

operations etc. Recently, Nvidia started to incorporate additional module called,

Tensor core, to accelerate specifically for neural networks computations. GPUs

129

offer immense computing power to handle data-intensive and compute-intensive

applications. However, they are power hungry devices. For any specific

applications, the power consumption of GPUs are almost 30x-50x more compared

to CPUs or FPGAs. Although, GPUs can perform a lot faster than CPU or FPGA,

the architecture is fixed and the power consumption is too high.

• FPGAs: FPGAs are one of the promising avenues for exploring tradeoff analysis

for area and power. It is a suitable platform to efficiently prototype a design. Due

to their inherent nature of re-programmability, a number of different applications

can be efficiently developed and prototyped to meet faster time-to-market

requirements. FPGAs also offer useful solutions to develop complex design such

as providing embedded processor, DSP blocks, IP cores, custom IP cores, I/O

interfaces etc [186]. The important factors such as low-power requirements, less

system cost, adaptable platforms provides an opportunities to design a high-

performance computing platforms for large-scale data applications such as deep

learning. However, the run-time to translate and map an RTL design takes longer

and in certain cases routing the individual blocks fails due to limited interconnect

resources. In such cases, the user needs to carefully modify the design to meet the

synthesis rules.

Table 24: Comparison of various computing platforms

 CPU GPU ASIC FPGA

Speed Slow Fast Fastest Medium/fast

Power Med Highest Lowest Low

Cost Fair High High Low

Perf/W Low Med High High

Architecture Traditional Compute Pow Fixed Arch. Reconfigurable

130

To get a clear insight, we limit our focus to GPUs and FPGA comparison. An in-

depth comparison between GPUs and FPGAs must be considered in order to make a

reasonable choice in terms of speed, power consumption, and cost. Based on the analysis

and survey of existing work [187][188][189][190][191][192][193][194][195][196], we

present a speculative analysis to get an insight for GPU and FPGA comparison as

illustrated in fig 5.2. The corresponding table 25 summarizes the contributing factor for

each partition/range. In the graph, X-axis is the size of an applications, Y-axis is

theoretical estimate for performance based on multiple factors such ease-of-use, power,

cost, performance. The graph is partitioned into three segments based on the cost of the

GPU/FPGA ranging from:

• Partition 1: Low-end range, less than 10k

• Partition 2: Mid-range, between 10k and100k

• Partition 3: Data centers, higher than 100k USD.

Figure 5.1: Speculative analysis for GPU vs. FPGA comparison relative to application

size

Partition 1: In this range, choice of GPU is more suitable compared to FPGAs,

because the main contributing factor is the ease-of-use. Not much modification is

131

required to run on the GPUs which are less time-consuming, no hardware expertise is

required and the perf/W gain is negligible. Almost same performance can be obtained

from FPGAs but requires time-consuming hardware design skills.

Partition 2: This is the range where the choice of GPUs and FPGAs becomes a

tradeoff. For researcher or third party vendor with their own servers, they can extract the

potential gain from FPGAs in terms of performance per Watt. With certain hardware

design skills, a designer can make the most in terms of cost and flexibility to adapt to

various applications. For instance, we can directly connect a camera module to FPGAs

and make a real-time face recognition system. On the other hand, we need a host

computer to use GPUs for real-time face recognition. Therefore, FPGAs provide a lot

more flexibility when compared to other platforms. In case, if the designer plans to

fabricate their own chips, FPGAs provides that flexibility as well to prototype the chip

prior to fabrication.

Table 25: Tradeoff analysis for GPU & FPGA

LOW-END MID-RANGE DATACENTERS

- Ease-of-use -
Contributing
factor
- Hardware
skills required
for FPGAs
- Computing
power relative
to platform
price

- Cost & Perf/W -
Contributing factor
- Reconfigurability to
incorporate various
optimization techniques
- For example, Approx.
computing approach for FP
operations
- Towards prototyping for
ASICs, ASIPs
- Needs to take care of
additional overhead for area,
power and cost
- Choice of GPUs and FPGAs
will be tradeoff
- Long-term application and
application size, budget

- Computing power - Contributing
factor
- Run-time, High-end FPGAs - NA
- FPGAs mostly fails to configure due
to rout ability issues and hard to scale
up for the large applications
- AI Training - GPUs
- AI Inference - FPGAs (recently
being incorporated)
- Approximate cost analysis using data
centers service charge calculator
- GPU - ~39 cents per million images
(scaled value)
- FPGAs - ~21 cents per million
images (scaled value)

132

Partition 3: Anything over $100k, these are high-end models for data centers.

Currently, not many FPGAs can support the applications at the Datacenter’s range. Also,

in the cloud computing platforms such as Microsoft Azure, Amazon AWS we can find

FPGAs only for the AI inference but not for AI training. Because translating the design,

routing the design using limited interconnects in the FPGA will most typically fail at that

level. Therefore, to the best of our knowledge, we could not find FPGAs that can handle

the computing power required by the cloud computing platforms.

5.3.2 Design Approach and Evaluation Plan

Many other platforms can be parameterized and configured to perform many

tasks. However, when it comes to designing a dedicated hardware or a chip, we need

flexibility to decide on architectural trade-offs to meet the design budget. Flexibility

relative to the logic elements, number of clock cycles, number of transistors etc (in most

cases, the design budget is very stringent). Therefore, to turn an algorithm into a chip,

using above mentioned parameters we can identify the main contributing factors to

improve the performance and cut back on some of the parameters to meet the design

budget. Therefore, the following experimental results illustrate an analysis for potential

optimized acceleration solutions.

• In the conventional CPU implementations, frequent delays arise due to the

communication between CPU & memory. In some cases, using hardware

accelerations can decrease performance due to, cost of moving the data is larger

than the gain from the faster hardware execution. These problems can be easily

reduced in FPGA device by providing large amount of local memory space.

133

• Earlier implementations rarely used multiplication in FPGA since it was fairly

expensive in terms of resources. Newer FPGA families targeted for many digital

signal processing applications include high-speed hardware multipliers and

multiply accumulate units. Making use of all the major advantages of FPGAs over

CPU devices, we can apply this design to many application domains.

• On the other hand, FPGA comparison with ASIC involve addressing the

continuously evolving changes in the neural networks. In the last decade, the

neural networks have undergo a number of changes and optimization and keeping

pace with such rapid changes in terms of hardware design will add significant cost

to deploy a design on hardware.

In summary, in order to support and handle the computation requirements of

neural networks, GPUs and FPGAs are the potential solutions. The trend in the hardware

technology is following towards ensemble architecture with both GPUs and FPGAs. For

the time being, FPGA seems like a reasonable choice to adapt for a wide range of

applications at low cost, power consumption.

5.3.3 Base System-level Design and Internal Architecture for Deep Neural Network

An L-layer DNN can be represented mathematical [197] as shown in equation (1)

below:

F�x; θ� = �f¨°f¨o�° … °f���x� (1)

where, x: input sample

 θ: weight parameters, wi

 F: output function

134

The overall output function in equation (1), F can be simplified as shown in

equation (2),

F = w��� ° f� ° α�o� �2�
As mentioned previously, an error function is formulated to adjust the weight

parameters using stochastic gradient decent. The mathematical equation of error function

for classification is given in equation (3).

J«�x, y; θ� = −〈y, �log ° σ��F�x; θ��〉 �3�
The error function is minimized by iterating through a loop by means of back-

propagation. The stochastic gradient descent approach is used to find the minimum error

function values using derivatives, as represented in the equation (4) below:

∇²³J�x, y; θ� = ∇²³∗ f¨�x¨�. D∗w¨���x¨���. e¨ = ∇²³∗ f¨�x¨�. e¨ �4�

Figure 5.2: Base system-level architecture for deep neural network

The system-level of higher abstraction level is shown in figure 5.3. The base

system-level design is almost same as mentioned in chapter 3, except the internal

architecture of user-defined custom IP. The user-defined custom is IP is shown in figure

5.7. The above generic mathematical framework for L-layered DNN is calculated using

derivatives with respect to the parameters of each layer to minimize error function. DNN

has extremely high structural complexity; however, the underlying fundamental

operations involve matrix-vector computations as illustrated in figure 5.4 & 5.6.

A
X

I4
 I

n
te

rc
o

nn
ec

t

ILMB BRAM

Controller

DLMB BRAM

Controller

128 kb BRAM

A
X

I4
-L

it
e

In
te

rc
on

ne
ct

AXI
Timer

UART

User-defined

Custom IP

AXI IP

Interface

AXI Master Burst

Transfer Controller

512MB

DDR3-SDRAM

Single issue
pipeline processor

Memory
Management Unit

Buffers / Register

File

Instruction Cache /
Data Cache (64kb)

Micro-blaze (32-bit processor)

135

Figure 5.3: Internal Architecture and Data-flow for k-layer deep neural network

The dataflow in a DNN, results in a long dependencies due to chain of back-

propagation but the matrix computations and convolution operations remains unchanged.

Matrix computations and convolution operations contribute to total of 90% of the overall

operations [167].

Figure 5.4: Internal Architecture of single neuron

Constructing a highly parallel computing array to support the common matrix

computations would efficiently accelerate the training process, as illustrated using a

single generic module in Figure 5.5. Therefore, in this research our objective seeks to

provide customized and optimized configurable hardware architectures to support both

inference as well as training process at low-cost for portable embedded devices.

In/L0N1
PE, w1

In/L0N2

PE, w2

In/L0Nm0
PE, wm0

SYSTOLIC

CONTROLLER

Systolic arrays k instances

Unified
BRAM

Module

n:1

MUX

HL0N1
PE, w1

HL0N2
PE, w2

HL0Nm1
PE, wm1

Out/L0Nc1
PE, wc1

Out/L0Nc2
PE, wc2

Out/L0Ncm

PE, wcm

136

Figure 5.5: Internal Architecture for Input Layer of Deep Neural Network

Unlike GPUs, we estimate that developing a generic, parameterized and

configurable architecture has considerable merit to solve the scalabilities issues for

continuously evolving computational demands of a deep neural network.

5.3.4 Experimental Platforms

The accelerator IP for the neural networks is designed using mixed hardware

description language (both VHDL and Verilog) and as proof-of-concept, we have

developed DNN model using software codes (Spyder software). Xilinx Platform Studio

(XPS) is used to build the base system and the Register-transfer Level (RTL) DNN will

be designed using Xilinx ISE (Integrated Synthesis Environment) & ISim tools. Our

experimental results are also compared with the baseline software results, to verify the

correct operation.

w1(0-31), w1(32-63)

x1(0-31), x1(32-63)

Add1

Mul1,2

w2(0-31), w2(32-63)

x2(0-31), x2(32-63)
Mul3,4

w3(0-31), w3(32-63)

x3(0-31), x3(32-63)

Add2

Mul5,6

w4(0-31), w4(32-63)

x4(0-31), x4(32-63)
Mul7,8

Add0
x0

b

wm-1, wm-1

xm-1, xm-1

Addm

Mul2m-

3,2(m-1)

wm, wm)

xm, xm

Mul

2m-1,2m

Add0

Add1

Add0

Comparator

≥ 0

Comparator

≥ 0

Comparator

≥ 0

Unified
Block

RAM

Output

Neuron, C0

Output

Neuron, C1

Output

Neuron, Cn

Fully Connected

Neuron

Gradient

Descent

Optimizer

137

Figure 5.6: High-level multiple layers deep neural network

Mid-level: Memory Map Interconnect

AXI

Master Burst Ctrl

Memory Mgmt

Controller Off-chip

DDR3-SDRAM Rd/WR Addr/Data Channel

Top-level

SYSTEM – LEVEL ARCHITECTURE

In/L0N1

PE, w1

In/L0N2

PE, w2

In/L0Nm0

PE, wm0

SYSTOLIC

CONTROLLER

Systolic arrays – n instances

Unified BRAM Module

n:1 MUX

HL0N1
PE, w1

HL0N2
PE, w2

HL0Nm1
PE, wm1

Out/L0Nc1

PE, wc1

Out/L0Nc2

PE, wc2

Out/L0Ncm

PE, wcm

USER-DEFINED I P

138

The proposed DNN accelerator IP is developed using Xilinx’s Virtex 6 family

FPGA [103]. Specifically, XC6VLX240T-1FFG1156 FPGA [198], which consists of

high-performance logic slices (37680 slices) with embedded hardware IP resources such

as 748 DSP48E1 slices, 512MB DDR3-SDRAM and soft microprocessor capabilities.

For our experiments, we utilize DSP slices efficiently to improve the processing

capabilities and the logic slices provides a foundation for programmable platform for the

RTL design. Soft microprocessor, i.e., Micro-blaze, is used for handling the control

signals between customized-IP for DNN, UART serial ports, AXI communication

protocols, DDR3-SDRAM, AXI timers and Interrupts.

MicroBlaze is a 32-bit soft processor based on RISC architecture, available in

Xilinx embedded development kit (EDK). For our experiments, we have selected the area

optimization for MicroBlaze. Synthesis of MicroBlaze translates to 5 DSP48E1 slices and

38 BRAM operating at 100MHz. The micro-blaze handles the initialization tasks for pre-

fetching using AXI Master Burst transfer [199] and AXI timer [120]. The automated

design to access data [122] from DDR3-SDRAM is stored in the BRAM [200].

5.4 Experimental Results and Analysis

In this section, we present the results and analysis for cancer diagnosis datasets.

The accuracy of the DNN is a measure of number of correct data classification over the

total number of test samples, as given in the equation (5). The datasets are partitioned in a

range of 10 - 90% for training and rest of the data is used to evaluate the accuracy

performance of DNN classifier. Partitioning the datasets for training and inference

provides us a method to interpret the tradeoff analysis and the overall efficiency of

acceleration modules.

139

¢ggbZ[g�
d %, ��
 , ��� =
�� ∑ ¤��
 == ��� ∗ 100��o�
2w (5)

5.4.1 Case 1: Analysis on Classification Accuracy with Limited Iterations

Table 26 presents the comparison analysis between our work on SVM and the

neural network accelerator for relative comparison. In this experiment, we have divided

the benchmark dataset into varying ratio of training and inference samples. The SVM and

NN are trained with 10 - 90% of the dataset with an increment of 10% and the rest of the

data used for inference to evaluate the accuracy performance.

Table 26: Accuracy & Exec time for cancer dataset classification using SVM & NN with

limited iterations

Trainin

g set

(%)

MicroBlaze

Exec time SVM

(sec)

HW Exec

Time SVM

(sec)

MicroBlaze

Exec time CNN

(sec)

HW Exec

Time CNN

(sec)

CNN

Accurac

y (%)
RBF RBF

10 0.04391 0.0102643 0.036265 0.007827879 38.86

20 0.086489 0.0128378 0.0684011 0.007932034 66.6

30 0.208964 0.01655639 0.3263731 0.019670391 78.9

40 0.24173 0.021692 0.6072149 0.021347582 84.37

50 0.82645 0.0281505 1.27713 0.03476139 86.523

60 1.09582 0.0301093 1.74163 0.034667513 87.89

70 1.28426 0.0315973 1.880129 0.032668579 88.67

80 1.96756 0.0325584 2.286097 0.037346288 90.42

90 2.68965 0.03374492 2.8942913 0.049193527 91.01

140

Figure 5.7: Plot of accuracy vs. training data size of cancer dataset using SVM and NN

with limited iterations

Table 27: Accuracy & Exec time for cancer dataset classification using SVM & NN with

Unsynchronized trails

Traini

ng set

(%)

MicroBlaz

e Exec

time SVM

(sec)

HW Exec

Time SVM

(sec)
MicroBlaz

e Exec time

CNN (sec)

HW Exec

Time CNN

(sec)

CNN

Accura

cy (%)

SVM

Accura

cy (%)

RBF RBF
RBF -

Emb

10 0.04391 0.0102643 10.045617 0.217640163 98.2143 73.45

20 0.086489 0.0128378 10.839301 0.224211084 97.3451 88.63

30 0.208964 0.01655639 11.3788097 0.209691984 98.2353 89.96

40 0.24173 0.021692 14.1634256 0.18567331 99.1189 93.19

50 0.82645 0.0281505 20.820615 0.235712636 97.8873 93.47

60 1.09582 0.0301093 26.859118 0.277693702 97.9472 93.48

70 1.28426 0.0315973 28.777553 0.257613382 98.2412 91.96

80 1.96756 0.0325584 29.966104 0.215443676 98.022 92.27

90 2.68965 0.0337449 32.0186489 0.220408166 98.6328 92.66

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90

A
cc

u
ra

cy
 (

%
)

Data Size

Accuracy vs. Data size

SVM Accuracy (%) CNN Accuracy (%)

141

Figure 5.8: Plot of accuracy vs. training data size of cancer dataset using SVM and NN

with unsynchronized iterations

5.4.2 Case 2: Analysis on Classification Accuracy with Unsynchronized Trails

For evaluating the execution time and accuracy performance of each classifier is

tested for almost the same iteration count as SVM to present a insight relative to

difference performance. The accuracy performance of both the classifier is almost same

for similar iteration count. However, the execution time required is higher for neural

networks compared to SVM as shown in Table 26. These results are further utilized to

validate the correct operation of the hardware IPs as illustrated accuracy vs. data size plot

(Figure 5.7 & Figure 5.8).

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90

A
cc

u
ra

cy
 (

%
)

Data size

Accuracy vs. Data size

SVM Accuracy (%) CNN Accuracy (%)

142

5.4.3 Analysis on Execution Time relative to size of training vectors

The execution time is another major criteria for performance analysis for our

proposed embedded hardware accelerators for deep leaning applications. In order to

evaluate our embedded hardware accelerators/architectures, we create embedded

software architectures for the deep neural network algorithm on the same development

platform. Our embedded software architectures are executed on the 32-bit MicroBlaze

processor. The execution times for both the embedded hardware and software

architectures are obtained using the AXI Timer using cascade timer implementation.

These execution times are measured in real-time (sec), while our proposed embedded

architectures are actually running (in real-time) on the chip. In this case, we design the

AXI Timer in cascade mode to measure the accurate execution times for complete

training process. This is mainly because in certain scenarios, especially for large datasets,

the execution times exceed the allowable timer counter value of the AXI Timer

depending on the number of layers and epochs. In order to resolve the counter overflow

issue, the AXI timer is designed utilizing two timers in cascade mode.

The execution times for our proposed embedded architectures for the deep neural

networks algorithm are obtained with the varying data sizes. These execution times are

presented in Table 28, 29, for the Cancer benchmark dataset, respectively. Similar to the

classification accuracy results, three sets of execution times for embedded architectures

are obtained separately, for general processor time, micro-blaze execution time and

hardware design time. The execution times for each set (for both the embedded hardware

and software) are measured 10 times and the average is presented in the aforementioned

tables, respectively.

143

Table 28: Speedup Comparison – Cancer Dataset

The execution times for the embedded software and embedded hardware

architectures for the deep neural networks are illustrated in Figure 10Figure 5.9,

respectively, for the Cancer benchmark datasets. As illustrated, the execution times

increase almost exponentially with the increasing data sizes, for both the embedded

hardware and software architectures. Somewhat similar behaviors are observed when

using the Ionosphere dataset.

For our embedded hardware accelerator/architecture with polynomial kernel, the

speedup increases linearly (from 8 times to 61 times faster than the software

counterparts) when the percentage of training set increases from 10% to 90%.

The speedups, resulting from the embedded hardware architectures over

embedded software, for the deep networks, are presented Table 2828. Figure 5.11

demonstrate the speedups versus the data sizes (percentage of training set) for our

embedded hardware accelerators for the deep neural networks for the Cancer benchmark

dataset, respectively. At a glance, as shown in Figure 5.11, the speedups typically

increase as the percentage of training set increases.

Data

size

Vect

(%)
Vect

Base-

Line

MB Exec

time

HW Exec

Time (sec)

Acc.

(%)

Speedu

p /BL

Speedu

p /MB

1707 10 57 0.931 0.8844 0.1132 38.86 0.95 7.81

3414 20 114 0.986 0.9071 0.1014 66.6 0.92 8.94

5121 30 171 0.99 0.9009 0.0540 78.9 0.91 16.67

6828 40 228 1.223 1.0028 0.0518 84.37 0.82 19.36

8535 50 285 1.155 0.8431 0.0259 86.52 0.73 32.54

10242 60 342 1.113 0.7902 0.0189 87.89 0.71 41.65

11949 70 399 1.143 0.7772 0.0162 88.67 0.68 47.85

13656 80 456 1.193 0.7873 0.0140 90.42 0.66 56.19

15363 90 513 2.24 1.3664 0.0221 91.01 0.61 61.74

144

Figure 5.9: Embedded Software: Execution Times vs. Data Size for Cancer Benchmark

Dataset, case 1 (above) & 2 (below)

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60 70 80 90

E
x

e
c
u

t
io

n
 T

im
e

 (
s
)

Data Size

Microblaze execution time vs. Data size

MicroBlaze Exec time SVM (sec) MicroBlaze Exec time CNN (sec)

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70 80 90

E
x

e
c
u

t
io

n
 t

im
e

 (
s
)

Data size

Microblaze execution time vs. Data size

MicroBlaze Exec time SVM (sec) MicroBlaze Exec time CNN (sec)

145

Figure 5.10: Embedded Hardware: Execution Times vs. Data Size for Cancer Benchmark

Dataset, case 1 (above) & 2 (below)

As mentioned in the beginning of section 3.4, additional software experiments are

performed on a desktop computer using a python code for deep neural network algorithm.

Hence, we also compare our embedded hardware accelerators/architectures running at

0

0.05

0.1

0.15

0.2

0.25

0.3

10 20 30 40 50 60 70 80 90

E
x

e
cu

ti
o

n
 t

im
e

 (
s
)

Data size

H/W execution time vs. Data size

HW Exec Time SVM (sec) HW Exec Time CNN (sec)

146

100MHz on Virtex-6 FPGA with the baseline python software design on the Intel i7

processor running at 2.3GHz. In this case, the results for our proposed embedded

hardware accelerators/architectures are shown in Table 27-29 compared to the software

design.

Figure 5.11: Embedded Hardware: Speedup vs. Data Size for Cancer Benchmark Dataset

From these results, it is evident that our proposed embedded hardware

accelerators achieve superior speedups (up to 61 times), compared to the equivalent

software running on embedded processor on the same development platform. This

significant performance improvement is due to several hardware optimization techniques

incorporated into our embedded hardware architectures, including creating customized

and optimized architectures by exploiting inherent parallelism and pipeline nature of the

computations/tasks; designing computations/tasks to overlap with memory access; burst

transfer and pre-fetching techniques.

10 20 30 40 50 60 70 80 90

Speedup SVM 4.2779 6.7371 12.6214 11.1437 29.3583 36.3947 40.6446 60.4317 79.7053

Speedup NN 4.6328 8.6234 16.5921 28.4442 36.7399 50.2381 57.5516 61.2135 58.8348

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

S
p

e
e

d
u

p

Data size

Speedup vs. Data size

Speedup SVM Speedup NN

147

From the aforementioned results and analysis, it is observed that for our proposed

embedded hardware accelerators/architectures for the deep neural networks, as the

number of samples (i.e., vectors) increases, the accuracy results and the speedup results

also increase. In this case, when the classifier has more samples to learn, it could lead to

identifying complex patterns. Furthermore, as the size of the matrices is increasing, as

well as the complexity of the computations/operations is increasing, customized and

optimized embedded hardware architectures might be the best avenue to accelerate and

enhance various performance metrics of the CO-based SVM algorithms, compared to the

conventional computing platforms such as general-purpose processors.

5.5 Concluding Remarks

In summary, in order to achieve better performance to handle high-dimensional

data, software optimization alone cannot provide the required support. It is essential to

provide hardware support for these applications with customized embedded architecture.

Our architecture aims to address the major constraints associated with the embedded

platforms. The area, power consumptions, design reconfiguration, time-to-market are the

major constraints associated with the embedded platforms. The experimental results are

encouraging and indeed show a potential gain in utilizing FPGA-based systems to

support and accelerate deep learning applications, specifically on embedded platforms.

The compact size of our proposed architectures to dynamically train from the

unstructured datasets, further enhance the potential of implementing deep learning on

embedded devices.

148

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In our research work, our objective is to provide new architectures, techniques

and design methodologies to overcome the constraints and the requirements associated

with big data applications on an embedded platform. We are specifically interested in

optimizing the Deep Neural Networks (DNN) and Support Vector Machines (SVM)

classifier, using a Convexity approach, which has not been implemented in previous

published literature. Our initial investigations reveled that; this capability can be further

enhanced using the convex optimization method irrespective of the number of inequality

constraints; efficient ways to accelerate the data computing capabilities. As mentioned in

section 2, there are several research works on hardware support for general SVM

algorithm in the published literature. Most of these hardware architectures were not

generic or parameterized. Also, most of the architectures were not designed with portable

embedded devices in pretext. None of these works proposed system-level architectures

and associated techniques to facilitate the real-time machine learning applications. From

our extensive investigation and to the best of our knowledge, we did not find any

hardware support or any FPGA-based hardware accelerators, especially for the convex

optimization-based SVM algorithm, in the published literature, which makes our research

novel and unique.

In this research work, we also introduced novel, customized, and optimized

FPGA-based hardware accelerator for deep neural networks on embedded platforms. Our

embedded architectures are generic, parameterized, and scalable. Thus, without changing

149

the internal hardware architectures, our embedded designs can be used for different

datasets with varying sizes, can be executed on different embedded platforms, and can be

used for various machine learning applications, while satisfying the associated constrains

of the embedded devices. We also introduced efficient system-level architecture for our

FPGA-based hardware accelerator IPs. With this system-level design, we designed and

integrated unique techniques to reduce the memory access latency and to facilitate real-

time data analysis and processing.

Our embedded hardware accelerator for CO-based SVM executed up to 75 times

(base level architecture) and 107 times (systolic array architecture) faster than its

software counterpart running on the embedded microprocessors. Our embedded hardware

accelerator for DNN executed up to 61 times faster than its software counterpart running

on the embedded microprocessors. Our embedded designs (both hardware and software)

achieved up to 100% classification accuracy. These performance metrics are crucial

especially for real-time machine learning applications, which typically require processing

a large volume of data.

 We also introduced lean and compact embedded software architecture for SVM

and DNN, which was designed to fit into the available resources of the embedded

microprocessor on chip. The experimental results are encouraging and indeed show a

great potential in utilizing FPGA-based systems to support and accelerate machine

learning applications, specifically on embedded platforms. The compact size of our

proposed architectures as well as the ability of our embedded designs to dynamically

train from the unstructured datasets, further enhance the potential of implementing

machine learning on embedded devices.

150

6.2 Future work

In this research, we have highlighted many opportunities and obstacles to

incorporate in the FPGA-based design. Several large-scale software packages have been

developed for many application domains. But some of these domains can be optimized

further by appending the above mentioned methods. In future, the existing systems

already uses several management schemes such as low-precision computation, pre-

fetching, and dynamic scaling to ensure synergy of many techniques and it is also

important for a smooth integration of the new techniques in commercial systems. As the

quest for performance confronts resources constraints, major breakthroughs in computing

efficiencies are expected from many conventional or unconventional approaches.

In this proposal, we have provided the details of system-level architecture for

supervised learning, investigated accelerations techniques relative to systolic arrays, and

developed an efficient memory management technique. Using the knowledge gained to

further establish a framework for instruction set architecture for AI chip design would be

valuable contribution to accelerate AI applications and support global digital

transformation. However, there are several challenges which still need to be addressed.

Some of the potential future directions presented below are worth investigating further.

• One of the challenges we came across to solve quadratic optimization was the

selection of hyper-parameters for efficient convergence. Prior to training process, we

hope that providing another independent module for model selection criterion based

on certain probability estimation could improve the training time as well as reduce the

generalization error efficiently.

151

• In this work, we have developed the embedded architecture for sequential minimal

optimization, which restricts to two working sets. For our future work, we intend to

develop generalized decomposition methods to solve the sub-problem of quadratic

programming.

• Our embedded architecture is developed based on the duality theory formulation.

Further investigation is recommended to provide hardware support for primal

minimization using interior point method to address the computational burden of

iterative process of convex optimization.

• In this research, we have provided the hardware support for convex optimization. We

intend to explore semi-definite programming independently for different

mathematical optimizations. Also, providing the flexibility to incorporate the

hyperbolic tangent kernels.

• Also, as future work, we are planning investigate ways to incorporate partial and

dynamic reconfiguration features (as stated in [222],[223]) and HDL code

optimization techniques (as stated in [224]) into our FPGA-based

accelerators/architectures to further enhance the area-efficiency and flexibility,

similar to our partial and dynamic reconfiguration works in

[204],[212],[225],[226],[227],[228],[229]. In addition, we are investigating ways to

integrate our multi-ported memory architectures, including [230],[231],[232],[233], to

facilitate the parallel processing modules in our proposed systolic array designs, to

further enhance the speedup, while considering the speed-space tradeoffs.

152

REFERENCES

[1] Markets and Markets INC, "Embedded System Market by Hardware (MPU, MCU,

Application-specific Integrated Circuits, DSP, FPGA, and Memories), Software

(Middleware, Operating Systems), System Size, Functionality, Application,

Region - Global Forecast to 2025," Markets and Markets, Northbrook IL, 2020.

[2] P. W. Ankita Bhutani, "Embedded Software Market Size, By Operating System

(General Purpose Operating System (GPOS){Windows, Linux[Ubuntu, RedHat,

Debian, OpenSUSE, Fedora], Android}, Real Time Operating System

(RTOS){VxWorks, QNX, FreeRTOS, ARM Mbed}), By Function (Standalone S,"

Global Market Insights, 2019.

[3] Microsoft Corporation, "Project Catapult," Microsoft, [Online]. Available:

https://www.microsoft.com/en-us/research/project/project-catapult/.

[4] O. Elgaw, A. M. Mutawa and A. Ahmad, "Energy-Efficient Embedded Inference

of SVMs on FPGA," in IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), Miami, FL, USA,, 2019.

[5] D. Singh and C. Reddy, "A survey on platforms for big data analytics," in Journal

of Big Data 2, 8 (2015). https://doi.org/10.1186/s40537-014-0008-6.

[6] T. Chen, X. Gao and G. Chen, "The features, hardware, and architectures of data

center networks: A survey,," Journal of Parallel and Distributed Computing,, pp.

45-74, 2016.

[7] D. Hennessy and J. Patterson, Computer Organization and Design MIPS Edition,

Elsevier, 2013.

[8] S. Abdallah, A. Chehab, I. H. Elhajj and A. Kayssi, "Stochastic hardware

architectures: A survey," in 2012 International Conference on Energy Aware

Computing, Morphou, 2012, pp. 1-6..

153

[9] Clive Max Maxfield, Application-Specific Integrated Circuits (ASICs), ISBN

9781856175074, https://doi.org/10.1016/B978-1-85617-507-4.00017-6., 2009.

[10] S. Mittal and J. S. Vetter, "A Survey of CPU-GPU Heterogeneous Computing

Techniques.," in ACM Comput. Surv. 47, 4, Article 69, 35 pages.

DOI:https://doi.org/10.1145/2788396, July 2015.

[11] S. Bre and M. Heimel, "GPU-Accelerated Database Systems: Survey and Open

Challenges," in Springer Berlin Heidelberg, Berilin, 2014.

[12] S. Karthikeyan & B. Gandhare, "Survey on FPGA Architecture and Recent

Applications," in 2019 International Conference on Vision Towards Emerging

Trends in Communication and Networking, Vellore, India, 2019, pp. 1-4.

[13] Clive Max Maxfield, FPGA vs. ASIC Designs ISBN 9780750689748,,

https://doi.org/10.1016/B978-0-7506-8974-8.00004-1., 2008.

[14] Xilinx "Large FPGA Methodology Guide," Xilinx, Inc., San Jose, CA, 2012.

[15] C. M. Bishop, Pattern recognition and machine learning, Springer, 2006.

[16] BCC Market Research - Machine Learning: Global Markets to 2022, "BCC

Research," May 2018. [Online]. Available: https://www.bccresearch.com/market-

research/information-technology/machine-learning-global-markets.html.

[17] M. Mohsin and D. G. Perera, "An FPGA-Based Hardware Accelerator for K-

Nearest Neighbor Classification for Machine Learning on Mobile Devices," in

Proc. of IEEE/ACM International Symposium on Highly Efficient Accelerators and

Reconfigurable Technologies, (HEART'18), 2018.

[18] A. Baheti and D. Toshniwal, "Trend Analysis of Time Series Data Using Data

Mining Techniques," in IEEE International Congress on Big Data (BigData

Congress), 2014.

154

[19] P. Berkhin, "Survey of Clustering Data Mining Techniques," Technical Report,

Accrue Software, 2002.

[20] E. Alpaydin and C. Kaynak, "Optical Recognition of Handwritten Digits Data

Set," UCI Machine Learning Repository. [Online].

[21] W. H. Wolberg, W. N. Street and O. L. Mangasarian, "Breast Cancer Wisconsin

(Diagnostic) Data Set - Machine Learning Repository," University of California,

Irvine, School of Information and Computer Sciences, 1995. [Online]. Available:

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic).

[22] C. Burges, "A Tutorial on Support Vector Machines for Pattern Recognition," ’98.

[23] S. P. Boyd and L. Vandenberghe, Convex optimization, Cambridge, UK; New

York: Cambridge University Press, 2004.

[24] C. Campbell and Y. Ying, Learning with support vector machines, vol. 10., San

Rafael, Calif.: Morgan and Claypool Publishers, 2010.

[25] N. Deng, Y. Tian and C. Zhang, Support Vector Machines: Optimization Based

Theory, Algorithms, and Extensions, Chapman & Hall, CRC, 2012.

[26] L. Wang, Support vector machines: theory and applications, New York; Berlin:

Springer, 2005.

[27] V. Piccialli and M. Sciandrone, "Nonlinear optimization and support vector

machines," Springer Nature 2018, vol. 16, pp. 111-149, 2018.

[28] V. N. Vapnik, The nature of statistical learning theory, 2nd ed., New York:

Springer, 2000.

[29] D. Anguita, A. Boni and S. Ridella, "A digital architecture for support vector

machines: theory, algorithm, and FPGA implementation," IEEE Transactions on

Neural Networks, vol. 14, no. 5, pp. 993-1009, Sep. 2003.

155

[30] S. Venkateshan, A. Patel and K. Varghese, "Hybrid Working Set Algorithm for

SVM Learning With a Kernel Coprocessor on FPGA," IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 23, no. 10, pp. 2221-2232, Oct. 2015.

[31] M. Papadonikolakis and C. Bouganis, "Novel Cascade FPGA Accelerator for

Support Vector Machines Classification," IEEE Transactions on Neural Networks

and Learning Systems, vol. 23, no. 7, pp. 1040-1052, July 2012.

[32] "Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim.

2014. Do we need hundreds of classifiers to solve real world classification

problems? J. Mach. Learn. Res. 15, 1 (January 2014), 3133–3181.".

[33] S. Afifi, H. GholamHosseini and S. and Poopak, "Hardware implementations of

SVM on FPGA: A state-of-the-art review of current practice," International

Journal of Innovative Science, Engineering & Technology, (IJISET), vol. 2, no. 11,

pp. 732-752, Nov 2015.

[34] S. Afifi, H. GholamHosseini and R. and Sinha, "FPGA Implementations of SVM

Classifiers: A Review," Springer Journal on SN Computer Science, vol. 1, no. 133,

pp. 1-17, April 2020.

[35] F. Lopes, J. Ferreira and M. Fernandes, "Parallel Implementation on FPGA of

Support Vector Machines Using Stochastic Gradient Descent," in Electronics

2019, 8, 631..

[36] K. Koliogeorgi, G. Zervakis, D. Anagnostos, K. Siozios and Z. N., "Optimizing

SVM Classifier Through Approximate and High Level Synthesis Techniques," in

8th International Conference on Modern Circuits and Systems Technologies

(MOCAST), Thessaloni, 2019.

[37] S. Afifi, H. GholamHosseini and R. Sinha, "A system on chip for melanoma

detection using FPGA-based SVM classifier," Microprocessors and Microsystems,

vol. 65, no. ISSN 0141-9331, pp. 57-68, 2019.

156

[38] D. H. Noronha, M. F. Torquato and M. A. Fernandes, "A parallel implementation

of sequential minimal optimization on FPGA," Microprocessors and

Microsystems, vol. 69, no. 0141-9331, pp. 138-151, 2019.

[39] V. Tsoutsouras, K. Koliogeorgi and S. Xydis, "An Exploration Framework for

Efficient High-Level Synthesis of Support Vector Machines: Case Study on ECG

Arrhythmia Detection for Xilinx Zynq SoC," in J Sign Process Syst 88, 2017.

[40] Struharik and V. Vranjkovic, "Coarse-grained reconfigurable hardware accelerator

of machine learning classifiers," in International Conference on Systems, Signals

and Image Processing (IWSSIP), Bratislava, 2016.

[41] M. P. Bouganis, "A novel FPGA-based SVM classifier," in International

Conference on Field-Programmable Technology, Beijing, 2010.

[42] C. Bouganis and M. Papadonikolakis, "A Heterogeneous FPGA Architecture for

Support Vector Machine Training," in 2010 18th IEEE Annual International

Symposium on Field-Programmable Custom Computing Machines, Charlotte, NC,

2010, pp. 211-214, doi: 10.1109/FCCM.

[43] B. Mandal, M. Sarma, K. Sarma and N. Mastorakis, "Implementation of systolic

array based SVM classifier using multiplierless kernel," in Proceedings of the 16th

International Conference on Automatic Control, Modelling & Simulatio, 2014.

[44] C. Bouganis and M. Papadonikolakis, "A scalable FPGA architecture for non-

linear SVM training," in 2008 International Conference on Field-Programmable

Technology, Taipei, 2008, pp. 337-340, doi: 10.1109/FPT.2008.4762412..

[45] M. Papadonikolakis, C. Bouganis and G. Constantinides, "Performance

comparison of GPU and FPGA architectures for the SVM training problem," in

2009 International Conference on Field-Programmable Technology, Sydney,

NSW, 2009, pp. 388-391, doi: 10.1109/FPT.20.

[46] M. Pietron, "Comparison of GPU and FPGA Implementation of SVM Algorithm

for Fast Image Segmentation," in vol. 7767, 2013..

157

[47] Y. Yuan, K. Virupakshappa, Y. Jiang and E. Oruklu, "Comparison of GPU and

FPGA based hardware platforms for ultrasonic flaw detection using support vector

machines," in 2017 IEEE International Ultrasonics Symposium (IUS),

Washington, DC, 2017, pp. 1-4.

[48] S. Cadambi, "A Massively Parallel FPGA-Based Coprocessor for Support Vector

Machines," in 2009 17th IEEE Symposium on Field Programmable Custom

Computing Machines, Napa, CA, 2009, pp. 115-122, doi:

10.1109/FCCM.2009.34..

[49] S. Wang, Y. Peng, G. Zhao and X. Peng, "Accelerating on-line training of LS-

SVM with run-time reconfiguration," in 2011 International Conference on Field-

Programmable Technology, Dec. 2011.

[50] M. Paoletti, J. Haut, X. Tao, J. Miguel and A. Plaza, "A New GPU Implementation

of Support Vector Machines for Fast Hyperspectral Image Classification," in

Remote Sens. 2020, 12, 1257..

[51] J. C. Porcello, "Designing and Implementing SVMs for High-Dimensional

Knowledge Discovery Using FPGAs," in 2019 IEEE Aerospace Conference, Big

Sky, MT, USA, 2019, pp. 1-8, doi: 10.1109/AERO.2019.8741916..

[52] H. Chen, "Hyperparameter Estimation in SVM with GPU Acceleration for

Prediction of Protein-Protein Interactions," in 2019 IEEE International Conference

on Big Data (Big Data), Los Angeles, CA, USA, 2019, pp. 2197-2204, doi:

10.1109/BigData47090.2019.9.

[53] J. Sirkunan, N. Shaikh-Husin and M. N. Marsono, "Interleaved

Incremental/Decremental Support Vector Machine for Embedded System," in 2019

IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan,

2019, pp. 1-5, doi: 10.1109/ISCAS.2019.870.

[54] C. Kyrkou, T. Theocharides and C. Bouganis, "Boosting the Hardware-Efficiency

of Cascade Support Vector Machines for Embedded Classification Applications,"

158

in Int J Parallel Prog 46, 1220–1246 (2018). https://doi.org/10.1007/s10766-017-

0514-1.

[55] J. Shi, "Efficient Support Vector Machine Training Algorithm on GPUs," AAAI’18

[56] S. Afifi, "An Optimized Hardware System on Chip for a Support Vector Machine

Classifier: a Case Study on Melanoma Detection," (2018)..

[57] I. Sayehi, M. Machhout and R. Tourki, "FPGA Implementation of SVM for

Nonlinear Systems Regression," in International Journal of Advanced Computer

Science and Applications. 8. 10.14569/IJACSA.2017.080816., 2017.

[58] C. E. Santos, R. C. Sampaio, H. Ayala, S. Coelho, R. Jacobi and C. Llanos, "A

SVM optimization tool and FPGA system architecture applied to NMPC," in 2017

30th Symposium on Integrated Circuits and Systems Design (SBCCI), Fortaleza,

2017, pp. 96-102..

[59] R. Saini, S. Saurav, D. C. Gupta and N. Sheoran, "Hardware implementation of

SVM using system generator," in 2017 2nd IEEE International Conference on

Recent Trends in Electronics, Information & Communication Technology

(RTEICT), Bangalore, 2017, pp. 2129-21.

[60] J. Vanek, J. Michálek and J. Psutka, "A GPU-Architecture Optimized Hierarchical

Decomposition Algorithm for Support Vector Machine Training," in IEEE

Transactions on Parallel and Distributed Systems, vol. 28, no. 12, pp. 3330-3343,

1 Dec. 2017, doi: 10.11.

[61] S. Afifi, H. GholamHosseini and R. Sinha, "Hardware Acceleration of SVM-Based

Classifier for Melanoma Images," in Image and Video Technology -- PSIVT 2015

Workshops Springer International Publishing, 2016.

[62] N. Z. Tarapore, D. B. Kulkarni and V. K. Prasad, "Implementation of parallel

algorithm for support vector machine applied to intrusion detection systems," in

2016 International Conference on Computing, Analytics and Security Trends

(CAST), Pune, 2016, pp. 17.

159

[63] T. Li, X. Liu, Q. Dong, W. Ma and K. Wang, "HPSVM: Heterogeneous Parallel

SVM with Factorization Based IPM Algorithm on CPU-GPU Cluster," in 2016

24th Euromicro International Conference on Parallel, Distributed, and Network-

Based Processing (PDP), Heraklion.

[64] P. Pouladzadeh, S. Shirmohammadi, A. Bakirov, A. Bulut and A. Yassine, "Cloud-

based SVM for food categorization," in Multimedia Tools Appl. 74, 14 (July 2015),

5243–5260. DOI:https://doi.org/10.1007/s11042-014-2116-x.

[65] H. M. Hussain, K. Benkrid and H. Seker, "Dynamic partial reconfiguration

implementation of the SVM/KNN multi-classifier on FPGA for bioinformatics

application,," in 2015 37th Annual International Conference of the IEEE

Engineering in Medicine and Biology Soci.

[66] Y. You, H. Fu, S. L. Song, A. Randles, D. Kerbyson, A. Marquez, G. Yang and A.

Hoisie, "Scaling Support Vector Machines on modern HPC platforms," Journal of

Parallel and Distributed Computing,, vol. 76, pp. 16-31, 2015.

[67] C. Kyrkou, C. Bouganis, T. Theocharides and M. Polycarpou, "Embedded

Hardware-Efficient Real-Time Classification With Cascade Support Vector

Machines," in IEEE Transactions on Neural Networks and Learning Systems, vol.

27, no. 1, pp. 99-112, Jan. 2016,.

[68] S. Venkateshan, A. Patel and K. Varghese, "Hybrid Working Set Algorithm for

SVM Learning With a Kernel Coprocessor on FPGA," in IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 23, no. 10, pp. 2221-2232, Oct.

2015, doi: 10.1109/TVLSI.

[69] X. Zhang and Z. Yifeng, "GPU Implementation of Parallel Support Vector

Machine Algorithm with Applications to Intruder Detection," 2014.

[70] S. Song, H. Wang and L. Wang, "FPGA Implementation of a Support Vector

Machine Based Classification System and Its Potential Application in Smart Grid,"

160

in 2014 11th International Conference on Information Technology: New

Generations, Las Vegas, NV, 2014, pp.

[71] B. Mandal, M. Sarma and K. Sarma, "Design of a systolic array based

multiplierless support vector machine classifie," in 2014 International Conference

on Signal Processing and Integrated Networks (SPIN), Noida, 2014, pp. 35-39,

doi: 10.1109/SPIN.2014..

[72] L. Mohammed and A. Jallad, "Hardware Support Vector Machine (SVM) for

satellite on-board applications, 2014 NASA/ESA Conference on Adaptive

Hardware and Systems (AHS), Leicester, 2014, pp. 256-261, doi:

10.1109/AHS.2014.6880185.".

[73] T. Li, H. Li, X. Liu, S. Zhang, K. Wang and Y. Yang, "GPU Acceleration of

Interior Point Methods in Large Scale SVM Training," in 2013 12th IEEE

International Conference on Trust, Security and Privacy in Computing and

Communications, Melbourne, VIC, 2013, pp.

[74] J. Jin, X. Cai and X. Lin, "Efficient SVM Training Using Parallel Primal-Dual

Interior Point Method on GPU," in 2013 International Conference on Parallel and

Distributed Computing, Applications and Technologies, Taipei, 2013, pp. 12-17,

doi: 10.1109/PDCAT.20.

[75] C. Kyrkou, T. Theocharides and C. Bouganis, "An embedded hardware-efficient

architecture for real-time cascade Support Vector Machine classification," in 2013

International Conference on Embedded Computer Systems: Architectures,

Modeling, and Simulation (SAM.

[76] T. Groleat, M. Arzel and S. Vaton, "Hardware acceleration of SVM-based traffic

classification on FPGA," in 8th International Wireless Communications and

Mobile Computing Conference (IWCMC), Limassol, 2012, pp. 443-449, doi:

10.1109/IWCMC.2012.6314245., 2012.

161

[77] Z. Nie, "An FPGA Implementation of Multi-Class Support Vector Machine

Classifier Based on Posterior Probability," 2012.

[78] A. Athanasopoulos, A. Dimou, V. Mezaris and I. Kompatsiaris, "GPU acceleration

for support vector machines," 2011.

[79] D. Mahmoodi, A. Soleimani, H. Khosravi and M. Taghizadeh, "FPGA Simulation

of Linear and Nonlinear Support Vector Machine," in Journal of Software

Engineering and Applications, Vol. 4 No. 5, 2011, pp. 320-328. doi:

10.4236/jsea.2011.45036..

[80] C. Kyrkou and T. Theocharides, "A Parallel Hardware Architecture for Real-Time

Object Detection with Support Vector Machines," in IEEE Transactions on

Computers, vol. 61, no. 6, pp. 831-842, June 2012, doi: 10.1109/TC.2011.113..

[81] M. Ruiz-Llata, G. Guarnizo and M. Yébenes-Calvino, "FPGA implementation of a

support vector machine for classification and regression," in The 2010

International Joint Conference on Neural Networks (IJCNN), Barcelona, 2010, pp.

1-5, doi: 10.1109/IJCNN.2010.5.

[82] S. Bauer, S. Köhler, K. Doll and U. Brunsmann, "FPGA-GPU architecture for

kernel SVM pedestrian detection," in 2010 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition - Workshops, San Francisco, CA, 2010,

pp. 61-68, doi: 10.1109/CVPR.

[83] S. Chien and T. Lin, "Support Vector Machines on GPU with Sparse Matrix

Format," in 2010 Ninth International Conference on Machine Learning and

Applications, Washington, DC, 2010, pp. 313-318..

[84] K. Cao, H. Shen and H. Chen, "A parallel and scalable digital architecture for

training support vector machines.," in J. Zhejiang Univ. - Sci. C 11, 620–628

(2010). https://doi.org/10.1631/jzus.C0910500.

162

[85] T. Theocharides and C. Kyrkou, "SCoPE: Towards a Systolic Array for SVM

Object Detection," in IEEE Embedded Systems Letters, vol. 1, no. 2, pp. 46-49,

Aug. 2009, doi: 10.1109/LES.2009.2034709..

[86] J. Manikandan, B. Venkataramani and V. Avanthi, "FPGA Implementation of

Support Vector Machine Based Isolated Digit Recognition System," in 2009 22nd

International Conference on VLSI Design, New Delhi, 2009, pp. 347-352, doi:

10.1109/VLSI.Design.2009.23..

[87] E. Alba, D. Anguita, A. Ghio and S. Ridella, "Using Variable Neighborhood

Search to improve the Support Vector Machine performance in embedded

automotive applications," in 2008 IEEE International Joint Conference on Neural

Networks (IEEE World Congress on Co.

[88] D. Anguita, A. Ghio, S. Pischiutta and S. Ridella, "A Hardware-friendly Support

Vector Machine for Embedded Automotive Applications," in 2007 International

Joint Conference on Neural Networks, Orlando, FL, 2007, pp. 1360-1364, doi:

10.1109/IJCNN.2007.4371156.

[89] P.-H. Chen, R.-E. Fan and C.-J. Lin, "A study on SMO-type decomposition

methods for support vector machines," IEEE Transactions on Neural Networks,

vol. 17, no. 4, pp. 893-908, 2006.

[90] C.-W. Hsu and C.-J. Lin, "A comparison of methods for multiclass support vector

machines," IEEE Transactions on Neural Networks, vol. 13, pp. 415-425, 2002.

[91] S. S. Keerthi and E. G. Gilbert, "Convergence of a Generalized SMO Algorithm

for SVM Classifier Design," Machine Learning, vol. 46, no. 1, pp. 351-360, 2002.

[92] V. Vapnik, S. E. Golowich and A. Smola, "Support Vector Method for Function

Approximation, Regression Estimation and Signal Processing," in Proceedings of

the 9th International Conference on Neural Information Processing Systems,

Denver, Colorado, 1996.

163

[93] B. Schölkopf and A. J. Smola, Learning with kernels: support vector machines,

regularization, optimization, and beyond, Cambridge, Mass: MIT Press, 2002.

[94] B. Schölkopf, C. J. C. Burges and A. J. Smola, Advances in Kernel Methods:

Support Vector Learning, Cambridge, MA: MIT Press, 1999.

[95] J. Platt, "Sequential Minimal Optimization: A Fast Algorithm for Training Support

Vector Machines," April, 1998.

[96] C.-C. Chang, C.-W. Hsu and C.-J. Lin, "The analysis of decomposition methods

for support vector machines," IEEE Transactions on Neural Networks, vol. 11, no.

4, pp. 1003-1008, July 2000.

[97] S. Lucidi, L. Palagi, A. Risi and M. Sciandrone, "A convergent decomposition

algorithm for support vector machines," Computational Optimization and

Applications, vol. 38, no. 2, pp. 217-234, 2007.

[98] M. Andersen, J. Dahl and L. Vandenberghe, "CVXOPT: A python package for

convex optimization v.1.2.2," 2012. [Online]. Available:

https://cvxopt.org/index.html.

[99] C.-J. Lin, "A formal analysis of stopping criteria of decomposition methods for

support vector machines," IEEE Transactions on Neural Networks, vol. 13, no. 5,

pp. 1045-1052, 2002.

[100] P. Walton, "Artificial Intelligence and the Limitations of Information,"

Information, vol. 9, p. 332, December 2018.

[101] O. Obulesu, M. Mahendra and M. ThrilokReddy, "Machine Learning Techniques

and Tools: A Survey," in 2018 International Conference on Inventive Research in

Computing Applications (ICIRCA, 2018.

[102] "Getting Started with the Virtex-6 FPGA ML605 Embedded Kit," San Jose, 2010.

164

[103] Xilinx, Inc., "Xilinx Virtex-6 FPGAs," Xilinx, [Online]. Available:

https://www.xilinx.com/support/documentation/selection-guides/virtex6-product-

table.pdf.

[104] Xilinx Inc., "ML605 Hardware User Guide," San Jose, 2019.

[105] Xilinx, Inc., "Virtex-6 Family Overview - DS150 (v2.5)," Aug 2015. [Online].

Available: https://www.xilinx.com/support/documentation/data_sheets/ds150.pdf.

[106] Xilinx, "Virtex-6 FPGA Memory Resources - User Guide UG363 (v1.8)," Feb

2014. https://www.xilinx.com/support/documentation/user_guides/ug363.pdf.

[107] D. Lilja and S. Sapatnekar, Designing Digital Computer Systems with Verilog,

Minneapolis: Cambridge University Press, 2004.

[108] Xilinx, "Virtex-6 Libraries Guide for HDL Designs," Xilinx, San Jose, CA, 2013.

[109] Xilinx, Inc., "Xilinx Power Estimator User Guide," Xilinx, San Jose, CA, 2013.

[110] Xilinx, Inc., "Xilinx Power Tools," Xilinx, Inc., San Jose, CA, 2013.

[111] Xilinx, "Virtex-6 Libraries Guide for Schematic Designs," Xilinx, San Jose CA.

[112] Xilinx, Inc., "ISE Design Suite 14: Release Notes, Installation, and Licensing,"

Xilinx, Inc., San Jose, CA, 2013.

[113] Xilinx, Inc., "ISE In-Depth Tutorial," Xilinx, Inc., San Jose, CA, 2009.

[114] Xilinx, Inc., "ISE Tutorial," Xilinx, Inc., San Jose, CA, 2013.

[115] Xilinx, Inc., "ISim User Guide," Xilinx, Inc., San Jose, CA.

[116] Xilinx Inc., "AXI Interface Based ML605/SP605 Microblaze Processor

Subsystem," San Jose, 2012.

[117] Xilinx Inc., "Vivado Design Suite User Guide," Xilinx, San Jose, 2017.

165

[118] Xilinx, Inc., "ChipScope Pro Software and Cores," Xilinx, San Jose, CA, 2012.

[119] Xilinx, Inc., "Command Line Tools User Guide," Xilinx, Inc., San Jose, CA, 2013.

[120] Xilinx, Inc., "LogiCORE IP Product Guide," 05 October 2016. [Online].

https://www.xilinx.com/support/documentation/ip_documentation/axi_timer/v2_0/

pg079-axi-timer.pdf.

[121] D. Dua and C. Graff, "UCI - Machine Learning Repository," University of

California, Irvine, School of Information and Computer Sciences, 2017. [Online].

Available: http://archive.ics.uci.edu/ml.

[122] V. Sigillito, "Ionosphere Data Set Machine Learning Repository," University of

California, Irvine, School of Information and Computer Sciences, 1989. [Online].

Available: https://archive.ics.uci.edu/ml/datasets/ionosphere.

[123] Xilinx Inc., "ML605 Reference Design User Guide," 2009.

[124] Xilinx, "Getting Started with the Virtex-6 FPGA ML605 Embedded Kit," 2011.

[125] Xilinx, Inc., "Constraints Guide," Xilinx, San Jose, CA, 2013.

[126] Xilinx Inc., "AXI Reference Guide - UG761 (v13.1)," March 2011. [Online].

https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_refe

rence_guide.pdf.

[127] S.N. Shahrouzi and D.G. Perera, "Optimized Hardware Accelerators for Data

Mining Applications on Embedded Platform: Case Study Principal Component

Analysis," Elsevier Journal on Microprocessor and Microsystems (MICPRO), vol.

65, pp. 79-96, March 2019.

[128] D.G. Perera and K.F. Li, "Embedded Hardware Solution for Principal Component

Analysis," in Proceedings of IEEE Pacific Rim International Conference on

Communication, Computers, and Signal Processing, (PacRim’11), pp.730-735,

Victoria, BC, Canada, August 2011.

166

[129] A. Abdelhadi and G. Lemieux, "A Multi-ported Memory Compiler," in Proc. of

24th IEEE Annual International, 2016.

[130] D. Craigen, "“Embedded Systems”, Chapter 2 from “Validation, Verification and

Certification of Embedded Systems”, N," NATO Research and Technology

Organization, Oct 2005.

[131] D.G. Perera and K.F. Li, "Analysis of Single-Chip Hardware Support for Mobile

and Embedded Applications," in Proceedings of IEEE Pacific Rim International

Conference on Communication, Computers, and Signal Processing, (PacRim’13),

pp. 369-376, Victoria, BC, Canada, August 2013.

[132] F. Pedregosa and G. Varoquaux, "Scikit-learn: Machine Learning in Python,"

Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

[133] N. Peter, S. Ateeq Ur Rahman, G. Rakesh and H. Erik, "Hardware implementation

of the exponential function using Taylor series," in 2014 NORCHIP, Oct 2014.

[134] H. T. Bui, "Design and Synthesis of an IEEE-754 Exponenetial Function," in

Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer

Engineering, Alberta, Canada, May 1999.

[135] Y. Ago, K. Nakano and Y. Ito, "A Classification Processor for a Support Vector

Machine with Embedded DSP Slices and Block RAMs in the FPGA," in Proc. of

7th IEEE International Symposium on Embedded Multicore/Manycore System-on-

Chip (MCSoC), 2013.

[136] Xilinx, Inc., "LogiCORE IP Floating-Point Operator - PG060 (v7.0)," April 2014.

[Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v

7_0/pg060-floating-point.pdf.

[137] X.-S. Yang, Introduction to Mathematical Optimization, Cambridge UK:

Cambridge International Science Publishing, 2008.

167

[138] R. Struharik and V. Vranjkovic, "Coarse-grained reconfigurable hardware

accelerator of machine learning classifiers," in 2016 International Conference on

Systems, Signals and Image Processing (IWSSIP), Bratislava, 2016, pp. 1-5, doi:

10.1109/IWSSIP.2016.7502.

[139] B. Mandal, M. P. Sarma and K. K. Sarma, "Design of a systolic array based

multiplierless support vector machine classifier," in 2014 International Conference

on Signal Processing and Integrated Networks (SPIN), Noida, 2014, pp. 35-39,

doi: 10.1109/SPIN.2014..

[140] I. Amezzane, Y. Fakhri, M. El Aroussi and M. Bakhouya, "Hardware Acceleration

of SVM Training for Real-Time Embedded Systems: Overview," in Recent

Advances in Mathematics and Technology: Proceedings of the First International

Conference on Technology, Engineering, and Mathematics, Kenitra, Morocco,

March 26-27, 2018, Springer International Publishing, 2020, pp. 131--139.

[141] S. Afifi, "Hardware Implementations of SVM on FPGA: A State-of-the-Art

Review of Current Practice.," (2015)..

[142] S. Tavara., "Parallel Computing of Support Vector Machines: A Survey.," in ACM

Comput. Surv. 51, 6, Article 123 (February 2019), 38 pages.

DOI:https://doi.org/10.1145/3280989, 2019.

[143] Xilinx, Inc., "Xilinx ML605 Hardware User Guide (UG534)," Xilinx, Inc., 26

February 2019. [Online]. Available:

https://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf.

[144] S. Shahrouzi and D. Perera, User Guides for Xilinx ISE Design Suite, FPGA-Based

Embedded Systems Designs, and Design Flow and Methodologies, Colorado:

Electrical and Computer Engineering Department, University of Colorado,

Colorado Springs, 2015, p. 382.

[145] Z. Navabi, Verilog Digital System Design, New York: McGraw-Hill, 2006.

[146] Xilinx, "RTL Technology and Schematic Viewers," Xilinx, San Jose, CA, 2009.

168

[147] Xilinx, Inc., "Synthesis and Simulation Design Guide," Xilinx, San Jose, CA.

[148] Xilinx, Inc., "Timing Closure User Guide," Xilinx, San Jose, CA, 2012.

[149] Xilinx, Inc., "PlanAhead User Guide," Xilinx, Inc., San Jose, CA, 2013.

[150] Xilinx, Inc., "Power Methodology Guide," Xilinx, Inc., San Jose, CA, 2013.

[151] Xilinx, "RTL and Technology Schematic Viewers," San Jose, CA, 2012.

[152] Xilinx, Inc., "Xilinx/Cadence PCB Guide," Xilinx, Inc., San Jose, CA, 2011.

[153] Xilinx, Inc., "Xilinx/Mentor Graphics PCB Guide," San Jose, CA, 2011.

[154] Xilinx, Inc., "XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices,"

Xilinx, Inc., San Jose, CA, 2013.

[155] Xilinx, Inc., "LogiCORE IP AXI Master Burst DS844 (v1.00.a)," June 2011.

[Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/axi_master_bur

st/v1_00_a/ds844_axi_master_burst.pdf.

[156] M. Alom, T. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. Nasrin, M. Hasan, B.

Van Essen, A. Awwal and V. Asari, A State-of-the-Art Survey on Deep Learning

Theory and Architectures, 2019.

[157] W. L. Alsaadi, Z. Wang, X. Liu, N. Zeng, Y. Liu and F. E., "A survey of deep

neural network architectures and their applications," Neurocomputing, vol. 234,

no. 0925-2312, pp. 11-26, 2017.

[158] O. Abiodun, A. Jantan, O. Omolara, K. Dada, N. Mohamed and H. Arshad, "State-

of-the-art in artificial neural network applications: A survey," Heliyon, vol. 4, no.

11, p. e00938, 2018.

[159] Z. L. Liu, W. Yang, S. Peng and Fan, A Survey of Convolutional Neural Networks:

Analysis, Applications, and Prospects, https://arxiv.org/abs/2004.02806, 2020.

169

[160] Q. Zhang, L. T. Yang, Z. Chen and P. Li, "A survey on deep learning for big data,"

Information Fusion,, vol. 42, pp. 146-157, 2018.

[161] S. Grigorescu, B. Trasnea, T. Cocias and G. Macesanu, "A survey of deep learning

techniques for autonomous driving," Journal of field robotics, vol. 37, no. 3, pp.

362-386, 2019.

[162] Q. Mao, F. Hu and Q. Hao, "Deep Learning for Intelligent Wireless Networks: A

Comprehensive Survey," IEEE Communications Surveys & Tutorials, vol. 20, no.

4, pp. 2595-2621, 2018.

[163] U.S. Department of Energy, "United States Data Center Energy Usage Report,"

June 2016. [Online]. Available:

https://www.osti.gov/servlets/purl/1372902#:~:text=Based%20on%20current%20t

rend%20estimates,73%20billion%20kWh%20in%202020..

[164] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G.

Wang, J. Cai and T. Chen, "Recent advances in convolutional neural networks,"

Pattern Recognition, vol. 77, no. 0031-3203, pp. 354-377, 2018.

[165] A. Khan, A. Sohail, U. Zahoora and A. S. Qureshi, "A survey of the recent

architectures of deep convolutional neural networks," Artificial Intelligence

Review, vol. 53, no. 8, 2020.

[166] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju,

H. Shahrzad, A. Navruzyan, N. Duffy and B. Hodjat, "Chapter 15 - Evolving Deep

Neural Networks," Artificial Intelligence in the Age of Neural Networks and Brain

Computing, no. 9780128154809, pp. 293-312, 2019.

[167] Y. Chen, Y. Xie, L. Song, F. Chen and T. Tang, "A Survey of Accelerator

Architectures for Deep Neural Networks," Engineering, vol. 6, pp. 264-274, 2020.

[168] A. Shawahna & et al., "FPGA-Based Accelerators of Deep Learning Networks for

Learning and Classification: A Review," in IEEE Access, 2019.

170

[169] S. Mittal, "A survey of FPGA-based accelerators for convolutional neural

networks," Neural Computing and Applications, vol. 32, pp. 1109-1139, 01 02’20.

[170] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie and X. Zhou, "DLAU: A Scalable Deep

Learning Accelerator Unit on FPGA," in IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 2017.

[171] Y. Ma, N. Suda, Y. Cao, S. Vrudhula and J.-s. Seo, "ALAMO: FPGA acceleration

of deep learning algorithms with a modularized RTL compiler," in Integration’18.

[172] M. Alawad and M. lin, "Scalable FPGA Accelerator for Deep Convolutional

Neural Networks with Stochastic Streaming," in IEEE Transactions on Multi-Scale

Computing Systems, 2018.

[173] T. Tsai, Y. Ho and M. Sheu, "Implementation of FPGA-based Accelerator for

Deep Neural Networks," in IEEE 22nd International Symposium on Design and

Diagnostics of Electronic Circuits & Systems (DDECS), Romania, 2019.

[174] S. Srinivasan, "High Performance Scalable FPGA Accelerator for Deep Neural

Networks," ArXiv abs/1908.11809, 2019.

[175] T. V. Huynh, "Deep neural network accelerator based on FPGA," in 4th

NAFOSTED Conference on Information and Computer Science, Hanoi, 2017.

[176] Z. Liu, Y. Dou, J. Jiang, J. Xu, S. Li, Y. Zhou and Y. Xu, "Throughput-Optimized

FPGA Accelerator for Deep Convolutional Neural Networks," ACM Trans.

Reconfigurable Technol. Systems, vol. 10, no. 3, p. 23, July 2017.

[177] S. I. Venieris and C.-S. Bouganis, "Latency-driven design for FPGA-based

convolutional neural networks," in 27th International Conference on Field

Programmable Logic and Applications (FPL), Ghent, 2017.

[178] Y. Shen, M. Ferdman and P. Milder, "Maximizing CNN Accelerator Efficiency

Through Resource Partitioning," in Proceedings of the 44th Annual International

Symposium on Computer Architecture, Toronto, ON, Canada, 2017.

171

[179] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang and J. Cong,

"Automated Systolic Array Architecture Synthesis for High Throughput CNN

Inference on FPGAs," in Proceedings of the 54th Annual Design Automation

Conference 2017, Austin, TX, USA, 2017.

[180] Y. Ma, Y. Cao, S. Vrudhula and J.-s. Seo, "Optimizing loop operation and

dataflow in FPGA acceleration of deep convolutional neural networks," in

ACM/SIGDA International Symposium on, Monterey, California, USA, 2017.

[181] L. Lu, Y. Liang, Q. Xiao and S. Yan, "Evaluating Fast Algorithms for

Convolutional Neural Networks on FPGAs," in IEEE 25th Annual International

Symposium on Field-Programmable Custom Computing Machines, Napa, CA, ‘17.

[182] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic, E. Cosatto

and H. P. Graf, "A Massively Parallel Coprocessor for Convolutional Neural

Networks," in 20th IEEE International Conference on Application-specific

Systems, Architectures and Processors, 2009.

[183] S. Chakradhar, M. Sankaradas, V. Jakkula and S. Cadambi, "A Dynamically

Configurable Coprocessor for Convolutional Neural Networks," in Proceedings of

the 37th Annual International Symposium on Computer Architecture, France, ‘10.

[184] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello and Y. LeCun,

"NeuFlow: A runtime reconfigurable dataflow processor for vision," in CVPR

2011 WORKSHOPS, Colorado Springs, CO, 2011.

[185] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss and E. Chung,

"Accelerating Deep Convolutional Neural Networks Using Specialized Hardware,"

in Microsoft Research, https://www.microsoft.com/en-

us/research/publication/accelerating-deep-convolutional-neural-networks-using-

specialized-hardware/, 2015.

[186] Xilinx Inc., "Getting Started with the Xilinx Virtex-6 FPGA ML605 Evaluation

Kit," San Jose, 2011.

172

[187] InAccel.com, "CPU, GPU or FPGA: A use case on Logistic regression training in

cloud computing platforms," InAccel, 13 December 2019. [Online]. Available:

https://inaccel.com/cpu-gpu-or-fpga-performance-evaluation-of-cloud-computing-

platforms-for-machine-learning-training/.

[188] Aldec.com, "FPGA vs GPU for Machine Learning Applications: Which one is

better?," ALDEC - The Design Verification Company, [Online]. Available:

https://www.aldec.com/en/company/blog/167--fpgas-vs-gpus-for-machine-

learning-applications-which-one-is-better.

[189] J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu and S. Zhang., "Understanding

Performance Differences of FPGAs and GPUs," in In Proceedings of the 2018

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays

(FPGA '18), Association for Computing Machinery, New York, NY, USA, 288,

2018.

[190] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. O. G. Hock, Y. T.

Liew, K. Srivatsan, D. Moss, S. Subhaschandra and G. Boudoukh, "Can FPGAs

Beat GPUs in Accelerating Next-Generation Deep Neural Networks?," in In

Proceedings of the 2017 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays (FPGA '17)., Association for Computing Machinery,

New York, NY, USA, 5–14., 2018.

[191] N. Jouppi, "In-Datacenter Performance Analysis of a Tensor Processing Unit," in

ACM/IEEE 44th Annual International Symposium on Computer Architecture

(ISCA), Toronto, ON, Canada, 2017 pp. 1-12., 2017.

[192] A. Reuther, P. Michaleas, M. Jones, V. Gadepally and S. S. a. J. Kepner, "Survey

and Benchmarking of Machine Learning Accelerators," in IEEE High

Performance Extreme Computing Conference (HPEC), Waltham MA, USA, 2019.

[193] Berten - Digital Signal Processing, "GPU vs FPGA Performance Comparison,"

2016. [Online]. Available:

173

http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_Performanc

e_Comparison_v1.0.pdf.

[194] A. Stevens, "Nvidia DGX-2 review: More AI bang, for a lot more bucks," ZDNet,

04 January 2019. [Online]. Available: https://www.zdnet.com/article/nvidia-dgx-2-

review-more-ai-bang-for-a-lot-more-

bucks/#:~:text=For%20%24400%2C000%2C%20you%20could%20get,the%20mo

st%20complex%20AI%20challenges%22..

[195] Arrow.com, "FPGA vs CPU vs GPU vs Microcontroller: How Do They Fit into

the Processing Jigsaw Puzzle?," Arrow, 05 October 2018. [Online]. Available:

https://www.arrow.com/en/research-and-events/articles/fpga-vs-cpu-vs-gpu-vs-

microcontroller.

[196] B. Newman, "NVIDIA Tesla V100 Price Analysis," Microway, 08 May 2018.

[Online]. Available: https://www.microway.com/hpc-tech-tips/nvidia-tesla-v100-

price-analysis/.

[197] A. L. Caterini and D. E. Chang, Deep Neural Networks in a Mathematical

Framework, Springer Publishing Company, Incorporated., 2018.

[198] Xilinx Inc., "Virtex-6 Family Overview - DS150 (v2.5)," Aug 2015. [Online].

Available: https://www.xilinx.com/support/documentation/data_sheets/ds150.pdf.

[199] Xilinx Inc., "LogiCORE IP AXI Master Burst DS844 (v1.00.a)," June 2011.

[Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/axi_master_bur

st/v1_00_a/ds844_axi_master_burst.pdf.

[200] Xilinx Inc., "Virtex-6 FPGA Memory Resources - User Guide UG363 (v1.8)," Feb

2014. [Online]. Available:

https://www.xilinx.com/support/documentation/user_guides/ug363.pdf.

[201] S. Raschka, Python Machine Learning, BirmingHam - Mumbai: Packt Publishing,

2015.

174

[202] D.G. Perera and Kin F. Li, “Analysis of Computation Models and Application

Characteristics Suitable for Reconfigurable FPGAs”, in Proceedings of the 10th

IEEE International Conference on P2P, Parallel, Grid, Cloud, and Internet

Computing, (3PGCIC’15), pp. 244-247, Krakow, Poland, November 2015.

[203] D.G. Perera and Kin F. Li, “Hardware Acceleration for Similarity Computations of

Feature Vectors,” IEEE Canadian Journal of Electrical and Computer Engineering,

(CJECE), vol. 33, no. 1, pp. 21-30, Winter 2008.

[204] D.G. Perera and Kin F. Li, “FPGA-Based Reconfigurable Hardware for Compute

Intensive Data Mining Applications”, in Proceedings of 6th IEEE International

Conference on P2P, Parallel, Grid, Cloud, and Internet Computing, (3PGCIC’11),

pp. 100-108, Barcelona, Spain, October 2011.

[205] D.G. Perera and K.F. Li, “On-Chip Hardware Support for Similarity Measures,” in

Proceedings of IEEE Pacific Rim International Conference on Communication,

Computers, and Signal Processing, (PacRim’07), pp. 354-358, Victoria, BC,

Canada, August 2007.

[206] K.F. Li and D.G. Perera, “An Investigation of Chip-Level Hardware Support for

Web Mining,” in Proceedings of IEEE International Symposium on Data Mining

and Information Retrieval, (DMIR’07), pp. 341-348, Niagara Falls, ON, Canada,

May 2007.

[207] K.F. Li and D.G. Perera, “A Hardware Collective Intelligent Agent”, Transactions

on Computational Collective Intelligence, LNCS 7776, Springer, pp. 45-59, 2013.

[208] A.K. Madsen and D.G. Perera, “Efficient Embedded Architectures for Model

Predictive Controller for Battery Cell Management in Electric Vehicles”,

EURASIP Journal on Embedded Systems, SpringerOpen, vol. 2018, article no. 2,

36-page manuscript, July 2018.

[209] A.K. Madsen, M.S. Trimboli, and D.G. Perera, “An Optimized FPGA-Based

Hardware Accelerator for Physics-Based EKF for Battery Cell Management”, in

175

Proceedings of the IEEE International Symposium on Circuits and Systems,

(ISCAS’20), 5-page manuscript, Seville, Spain, May 2020.

[210] A.K. Madsen, “Optimized Embedded Architectures for Model Predictive Control

Algorithms for Battery Cell Management Systems in Electric Vehicles”; PhD

Dissertation, Department of Electrical & Computer Engineering, University of

Colorado Colorado Springs, August 2020.

[211] A. Alkamil and D.G. Perera, “Efficient FPGA-Based Reconfigurable Accelerators

for SIMON Cryptographic Algorithm on Embedded Platforms”, in Proceedings of

the IEEE International Conferences on Reconfigurable Computing and FPGAs,

(ReConFig’19), 8-page manuscript, Cancun, Mexico, December 2019.

[212] A. Alkamil and D.G. Perera, “Towards Dynamic and Partial Reconfigurable

Hardware Architectures for Cryptographic Algorithms on Embedded Devices”,

IEEE Access, Open Access Journal in IEEE, vol. 8, pp: 221720 – 221742, 10th

December 2020.

[213] A. Alkamil, “Dynamic Reconfigurable Cryptographic Architectures to Improve

Performance and Security on Embedded Systems”, PhD Dissertation, Department

of Electrical & Computer Engineering, University of Colorado Colorado Springs,

5th February 2021.

[214] M.A. Mohsin and D.G. Perera, “An FPGA-Based Hardware Accelerator for K-

Nearest Neighbor Classification for Machine Learning on Mobile Devices”, in

Proceedings of the IEEE/ACM International Symposium on Highly Efficient

Accelerators and Reconfigurable Technologies, (HEART’18), 6-page manuscript,

Toronto, Canada, June 2018.

[215] S. Ramadurgam and D.G. Perera, “Composing Optimized FPGA-Based Hardware

Architectures for Machine Learning Applications on Embedded Devices: Case

Study Convex Optimization-Based SVM”, Submitted to the Elsevier Journal of

Microelectronics (MEJ), 32-page manuscript, submitted on 2nd February 2021.

176

[216] J.P. Miro, " FPGA-Based Accelerators for Convolutional Neural Networks on

Embedded Devices", MSc Thesis, Department of Electrical & Computer

Engineering, University of Colorado Colorado Springs, CO, USA, May 2020.

[217] M.A. Mohsin, "An FPGA-Based Hardware Accelerator for K-Nearest Neighbor

Classification for Machine Learning", MSc Thesis, Department of Electrical &

Computer Engineering, University of Colorado Colorado Springs, CO, USA,

December 2017.

[218] L.H. Garcia, "An FPGA-Based Hardware Accelerator for Sequence Alignment by

Genetic Algorithm", MSc Thesis, Department of Electrical & Computer

Engineering, University of Colorado Colorado Springs, CO, USA, December

2019.

[219] R. Raghavan and D.G. Perera, “A Fast and Scalable FPGA-Based Parallel

Processing Architecture for K-Means Clustering for Big Data Analysis”, in

Proceedings of the IEEE Pacific Rim International Conference on

Communications, Computers, and Signal Processing, (PacRim’17), pp. 1-8,

Victoria, BC, Canada, August 2017.

[220] D.G. Perera and Kin F. Li, “Parallel Computation of Similarity Measures Using an

FPGA-Based Processor Array,” in Proceedings of 22nd IEEE International

Conference on Advanced Information Networking and Applications, (AINA’08),

pp. 955-962, Okinawa, Japan, March 2008.

[221] R. Raghavan, "A Fast and Scalable Hardware Architecture for K-Means Clustering

for Big Data Analysis", MSc Thesis, Department of Electrical & Computer

Engineering, University of Colorado Colorado Springs, CO, USA, May 2016.

[222] D.G. Perera and K.F. Li, “A Design Methodology for Mobile and Embedded

Applications on FPGA-Based Dynamic Reconfigurable Hardware”, International

Journal of Embedded Systems, (IJES), Inderscience publishers, 23-page

manuscript, vol. 11, no. 5, September 2019.

177

[223] D.G. Perera, “Analysis of FPGA-Based Reconfiguration Methods for Mobile and

Embedded Applications”, in Proceedings of 12th ACM FPGAWorld International

Conference, (FPGAWorld’15), pp. 15-20, Stockholm, Sweden, September 2015.

[224] S.N Shahrouzi and D.G. Perera, “HDL Code Optimization: Impact on Hardware

Implementations and CAD Tools”, in Proceedings of the IEEE Pacific Rim

International Conference on Communications, Computers, and Signal Processing,

(PacRim’19), 9-page manuscript, Victoria, BC, Canada, August 2019.

[225] D.G. Perera, “Chip-Level and Reconfigurable Hardware for Data Mining

Applications,” PhD Dissertation, Department of Electrical & Computer

Engineering, University of Victoria, Victoria, BC, Canada, April 2012.

[226] S.N. Shahrouzi, "Optimized Embedded and Reconfigurable Hardware

Architectures and Techniques for Data Mining Applications on Mobile Devices",

PhD Dissertation, Department of Electrical & Computer Engineering, University

of Colorado Colorado Springs, December 2018.

[227] D.G. Perera and Kin F. Li, “Similarity Computation Using Reconfigurable

Embedded Hardware,” in Proceedings of 8th IEEE International Conference on

Dependable, Autonomic, and Secure Computing (DASC’09), pp. 323-329,

Chengdu, China, December 2009.

[228] S.N. Shahrouzi and D.G. Perera, “Dynamic Partial Reconfigurable Hardware

Architecture for Principal Component Analysis on Mobile and Embedded

Devices”, EURASIP Journal on Embedded Systems, SpringerOpen, vol. 2017,

article no. 25, 18-page manuscript, 21st February 2017.

[229] D.G. Perera, “Reconfigurable Architectures for Data Analytics on Next-Generation

Edge-Computing Platforms”, Featured Article, IEEE Canadian Review, vol. 33,

no. 1, Spring 2021.

178

[230] S.N. Shahrouzi, A. Alkamil, and D.G. Perera, “Towards Composing Optimized Bi-

Directional Multi-Ported Memories for Next-Generation FPGAs”, IEEE Access,

Open Access Journal in IEEE, vol. 8, no. 1, pp. 91531-91545, 14th May 2020.

[231] S.N. Shahrouzi and D.G. Perera, “An Efficient Embedded Multi-Ported Memory

Architecture for Next-Generation FPGAs”, in Proceedings of 28th Annual IEEE

International Conferences on Application-Specific Systems, Architectures, and

Processors, (ASAP’17), pp. 83-90, Seattle, WA, USA, July 2017.

[232] S.N. Shahrouzi and D.G. Perera, “An Efficient FPGA-Based Memory Architecture

for Compute-Intensive Applications on Embedded Devices”, in Proceedings of the

IEEE Pacific Rim International Conference on Communications, Computers, and

Signal Processing, (PacRim’17), pp. 1-8, Victoria, BC, Canada, August 2017.

[233] S.N. Shahrouzi and D.G. Perera, “Optimized Counter-Based Multi-Ported Memory

Architectures for Next-Generation FPGAs”, in Proceedings of the 31st IEEE

International Systems-On-Chip Conference, (SOCC’18), pp. 106-111, Arlington,

VA, Sep. 2018.

179

APPENDIX A

A.1 Support Vector Machines – Scikit Learn

Scikit-learn [132] is a free python machine learning library [201], which provides

simple, efficient tools for classification, regression, clustering, dimensionality reduction,

model selection and preprocessing. Scikit-learn library is built using the open-source

libraries such as numPy, SciPy, Matplotlib, which are easier for the user to modify the

existing programs.

For Classification, various types of supervised and semi-supervised algorithms are

available, among which the following command serves as a simple example to illustrate

utilization of the tool for support vector machines.

class sklearn.svm.SVC(C=1.0, kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, shr

inking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verb

ose=False, max_iter=-1, decision_function_shape=’ovr’, random_state=None)

Table 29. List of parameters for support vector machine in Scikit learn

Serial Parameter Default Required Data type Usage

1 C 1 Optional Float Soft margin

2 kernel rbf Optional String If kernel is
selected

3 degree 3 Optional int If poly kernel is
selected

4 gamma auto optional float

5 coef0 0 optional float It is only
significant in poly
and sigmoid

6 Shrinking TRUE optional Boolean

7 Probability FALSE optional Boolean

8 tol 1.00E-03 optional Float

9 cache_size optional Float If kernel is used

10 class_weight None optional {dict, 'balanced'}

11 verbose FALSE boolean

12 max_iter -1 Optional int

13 decision_function
_shape

ovr

14 random_state None Optional int

15 Step size 0.01 Optional float

180

Table A.1 lists all the possible parameters available to modify a classifier suitable

for specific applications. Some of the parameters such as C: is a penalty parameters used

to limit the misclassification rate by adding a penalty to the classifier. Another parameter

called kernel provides different mathematical kernel options such as linear, polynomial,

Gaussian kernel, sigmoid and also custom kernels. Table A.2 lists additional functions

available to train a support vector machine classifier.

Table 30. List of additional functions for support vector machine in Scikit learn

Attributes usage Description

clf.support_vectors # get support vectors array-like, shape = [n_SV,
n_features]

clf.support_ # get indices of support vectors array-like, shape = [n_SV]

clf.n_support_ # get number of support vectors for

each class

array-like, dtype=int32, shape =
[n_class]

clf.dual_coef_ Coefficients of the support vector in the
decision function. For multiclass,
coefficient for all 1-vs-1 classifiers. The
layout of the coefficients in the
multiclass case is somewhat non-trivial.
See the section about multi-class
classification in the SVM section of the
User Guide for details.

array, shape = [n_class-1, n_SV]

clf.coef_ Weights assigned to the features
(coefficients in the primal problem).
This is only available in the case of a
linear kernel. coef_ is a readonly
property derived from dual_coef_ and
support_vectors_.

array, shape = [n_class-1,
n_features]

clf.intercept_ Constants in decision function. array, shape = [n_class * (n_class-
1) / 2]

Table 31. Code example for support vector machine in Scikit learn

Examples [132]

from sklearn import svm

import numpy as np

import matplotlib as mplt

X = [[0, 0], [1, 1]]

y = [0, 1]

clf = svm.SVC()

clf.fit(X, y)

print(clf.support_vectors)

181

A.2 Datasets for Classification
Details of the datasets [122] used to evaluate the classifier are as follows:

Table 32. Wisconsin Breast Cancer diagnostic datasets

Total of Samples 569

Dataset Wisconsin Cancer Dataset

Samples per

class

212 (M), 357 (B)

Total of Samples 569

Dimensionality 30

Features Real, Positive

Link https://scikit-

learn.org/stable/modules/generated/sklearn.datasets.load_breast_can

cer.html#sklearn.datasets.load_breast_cancer

Download

Dataset

https://goo.gl/U2Uwz2

Stage I Kernel Computations

Stage II Convex Optimization

Stage III Testing

Total Summation of the overall execution time for the above stages

Accuracy (%) (Number of correct classified data / total number of testing vectors)

* 100

Speedup Hardware execution time / Software execution time

Linear

Poly

Gaussian

 d: degree, γ: Coef0

C: Penalty

parameter

Affects all kernel, it is dependent on the objective function, but not on

the kernel function

sv Total number of support vector out of # of training samples

Windows 7

Home premium

i7-3610QM @ 2.3GHz, 8GB RAM, 64-bit OS

Micro-Blaze 32-bit soft processor, 100MHz, 128kB BRAM

Hardware

module

100MHz

182

Table 33. Wisconsin Breast Cancer diagnostic datasets – Data size

Training Set

Percentage # train samples # test samples Train Data Size Test Data Size

10% 57 512 54720 491520

20% 114 455 109440 436800

30% 171 398 164160 382080

40% 228 341 218880 327360

50% 285 284 273600 272640

60% 342 227 328320 217920

70% 399 170 383040 163200

80% 456 113 437760 108480

90% 513 56 492480 53760

Table 34. Ionosphere datasets

Total of Samples 351

Dataset Ionosphere Dataset

Samples per class (b), (g)

Total of Samples 351

Dimensionality 34

Features Real, Integer

Table 35. Ionosphere datasets – Data size

Training Set

Percentage # train samples # test samples Train Data Size Test Data Size

10% 36 315 34560 302400

20% 71 280 68160 268800

30% 106 245 101760 235200

40% 141 210 135360 201600

50% 176 175 168960 168000

60% 211 140 202560 134400

70% 246 105 236160 100800

80% 281 70 269760 67200

90% 316 35 303360 33600

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Published by ProQuest LLC (

 ProQuest

). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

28318662

28318662

2021

