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ABSTRACT 

In the era of smart and autonomous systems, machine learning is becoming the 

cornerstone of these systems. Machine learning, a subset of artificial intelligence, is being 

incorporated into various fields such as medical wearable in healthcare, smart cars in 

transportation, etc. Since most of these systems are typically realized on embedded 

devices, many machine learning applications are becoming common on these devices. 

However, embedded devices have many constraints: stringent area and power, increased 

speedup, reduced cost, and time-to-market. Furthermore, today’s machine learning 

techniques are becoming increasingly complex requiring more processing power. Also, 

these systems require real-time processing and analysis, in order to make dynamic 

decisions. Consequently, new architectures and techniques are required to support and 

accelerate machine learning applications on resource-constrained embedded devices. 

Neural Networks and Support Vector Machines are supervised learning 

algorithms that uses vast amount of data to train a machine learning model and draw 

inferences from the patterns. These algorithms incorporate statistical analysis and 

mathematical optimization techniques to analyze the data. Each data consists of large 

number of features to represent characteristics of a given sample. The ability to handle 

large-volume of data with high-dimensional features improves the accuracy performance 

of a machine learning model and is time-consuming and computationally expensive 

process. Currently, to accelerate the training of machine learning model, there are two 

popular hardware platforms, GPU and FPGA. GPU are easy to use and provide high 
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computing power. Due to their inherent parallelism, they provide significant acceleration 

compared to other platforms.  However, GPUs are expensive and power-hungry devices. 

Due to high power consumption, the performance per watt cost reduces drastically. On 

the other hand, FPGAs provide low-power support with high parallelism and 

reprogrammable capabilities. But they provide limited computing power due to 

implementation complexity. Although, GPUs are widely popular in data centers, FPGAs 

can offer distinct advantages over GPUs with reprogrammable and reconfigurable 

abilities, which is most suitable for the evolving machine learning landscape. 

Our goal in this research is to investigate and create customized embedded 

architectures to support on-chip hardware acceleration for data-intensive and compute-

intensive machine learning applications. 

In this work, our first contribution introduces embedded software and hardware 

architecture for support vector machines for both training and inference. We introduce 

novel and efficient system-level architecture for convex optimization to improve the 

accuracy performance of support vector machines. We introduce register transfer level 

details for different configurable kernels to handle linear and non-linear data for real-time 

applications. We architect efficient memory management techniques to build high-

throughput and low-latency system-level design. The proposed architectures allow us to 

identify the benefits of internal structure of FPGA fabric to augment AI acceleration at 

low cost, low power. 

The second contribution of this work introduces a design space exploration using 

parallel systolic arrays. Our contribution on design methodology and tradeoff analysis 

extends the adaptability of the platforms to a wide range of machine learning 
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applications. We elaborate on the limitations of system IPs and overcome the associated 

constraints of embedded devices. 

The final contribution introduces embedded architecture for deep neural networks 

for supervised learning. We introduce the design methodology which illustrates the 

fundamental characteristics to take advantage of inherent parallelism nature of the deep 

neural networks. This design methodology also aims to improve the current platforms to 

develop a framework for ensemble architecture to cater for specific requirements of 

certain application with no additional cost. The architectures are generic, independent and 

configurable modules providing flexibility to enable real-time adaptable design to support 

AI acceleration. Besides being an important contribution by itself, this radical approach 

led to identify the benefits to establish a framework for future AI Chip design and on-

device AI systems. 

Based on the proposed hardware acceleration modeling, analysis and optimization 

of machine learning algorithms, this thesis offers a design methodology, guidelines, and 

experimental analysis for different machine learning applications. The experimental 

results and analysis presented herein demonstrate the feasibility of the research for 

resource constrained embedded systems and also can be further extended to different 

fields of applications in data science. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction and motivation 

Embedded devices have significantly evolved over the past few years playing a 

key role in the overall digital transformation. This includes rapid adoption of embedded 

devices to build smart and connected ecosystems. At the same time, it has led to major 

research interest to develop complex and efficient embedded design supporting wide 

range of applications. On the other hand, embedded devices have numerous challenging 

factors including stringent area, low cost, power consumption, and limited memory. 

Consequently, these constraints pose serious challenges to the embedded systems 

designers. 

According to global statistical analysis [1], the market share for embedded 

hardware devices is projected to grow at 6.1% compound annual growth rate (CAGR) 

from 86.5 billion (USD) in 2020 to 116.2 billion (USD) by 2025, compared to embedded 

software forecast [2], 12 billion USD in 2019 to 20 billion USD by 2025. The promising 

growth rate of embedded hardware is expected to cover majority of the market share for 

various application domains. 

One such application domain that has become very common on embedded 

devices is machine learning. Machine learning is a statistical method to automate data 

analysis and is a subset of Artificial Intelligence. Innovations in artificial intelligence are 

the key driving factors for developing powerful machine learning techniques. Some of 

the applications of machine learning are: computer vision, medical diagnosis, online 

customer support, speech recognition etc. 
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Increasingly, machine learning plays a crucial role in our day-to-day activities. 

However, machine learning has many constraints in the real-world applications. One such 

constraint is the speed performance. Machine learning involves two tasks: training and 

testing (inference). During the training process, the machine learning model processes the 

input data to extract important features. During the inference, the extracted features are 

used to make output prediction. With the increase in the amount of data used for training, 

the computational time increases exponentially. This exponential increase in the 

computing time hinders the speed performance.  

In order to satisfy the speed constraints, various platforms are used to improve the 

speed performance such as general purpose dedicated Application-Specific-Integrated-

Circuits (ASICs) (including AI (Artificial Intelligence) chip), Graphical Processing Units 

(GPUs), and Field Programmable Gate Arrays (FPGAs). A general purpose processor 

provides high flexibility to support wide of range machine learning applications. 

However, the processing speed is unable to keep pace with the computational demands of 

machine learning applications. ASIC’s are one of the power efficient options and 

fabricated for a specific application. Although, the ASICs is a feasible option to provide 

hardware support to improve speed performance, changing the architecture and 

fabricating a new integrated circuit is a high risk and time consuming process. On the 

other hand, GPUs are the popular platforms for machine learning and provide immense 

amount of processing power to accelerate the machine learning applications, but they are 

power hungry devices diminishing overall performance per watt performance. 

Comparatively, use of FPGAs is dramatically increasing due to their flexibility to support 
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various machine learning applications, are significantly faster and one of the power 

efficient platforms. 

In 2010, Microsoft research group [3] proposed augmenting the Central 

Processing Units (CPUs) with FPGAs to enable machine learning applications. 

Eventually in 2016, Microsoft incorporated FPGAs for inference. However, despite the 

high cost and high power consumption, GPUs dominate the training process of machine 

learning. Although, GPUs provide a potential solution to solve the speed performance 

issue of compute-intensive and data-intensive machine learning applications, the power 

consumption is significantly higher. [4] illustrates the power consumption of GPUs are 

almost 45x times that the FPGAs. The high-power consumption reduces the overall 

performance per watt and is not a viable option for portable applications.  

Our previous analyses [131],[202] illustrates that FPGA-based systems are 

currently the best avenue to support compute and data-intensive applications and 

algorithms running on resource-constrained embedded devices. Furthermore, our 

previous work on FPGA-based accelerators, architectures, and techniques for various 

compute/data-intensive applications, including data mining and data analytics 

[127],[128],[203],[204],[205],[206],[207], control systems [208],[209],[210], security 

[211],[212],[213], machine learning [214],[215],[216],[217], and bioinformatics [218], 

demonstrates that FPGA-based systems are the best option to support and accelerate 

complex algorithms on embedded devices, considering the constraint associated with 

these devices and the requirements of the applications running on these devices. 

In this research work, we introduce customized and optimized embedded 

hardware architectures to support and accelerate machine learning applications for 
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portable embedded devices. We utilize the FPGA platforms to illustrate the feasibility, 

efficiency, and scalability of the platform for data-intensive and compute-intensive 

applications. We also introduce systolic array architecture to demonstrate the crucial 

architectural tradeoff to support and accelerate machine learning applications. In order to 

achieve our goals, we have formulated our research objectives as mentioned in the 

following section. 

1.2 Our research objectives 

The main objective of our research is to provide customized and optimized 

embedded architectures to support on-chip hardware acceleration for machine learning 

applications. 

In order to achieve our main research objective, we have divided our research 

work into three major stages. The objective of each progressive stage is as follows: 

• In the first stage, we explore the scalability, efficiency, and feasibility of the 

embedded hardware architectures to support both training and inference for 

machine learning algorithms specifically for support vector machines and deep 

neural network. 

• In the second stage, we investigate the potential gain and the trade-offs with 

respect to parallel processing, speed-performance, area-efficiency, and power 

analysis of hardware architecture for the aforementioned machine learning 

algorithms. 

• In the third stage, we analyze and develop the design methodology to build 

system-level architecture for FPGA-based design, considering the associated 

constraints of embedded platforms. Formulating the design methodology includes 
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trade-off analysis for area and execution time (thus, speedup), number of 

instances for parallel systolic array, adaptability of hardware design for different 

machine learning approaches, efficient memory management techniques etc. We 

aim to incorporate the insights gained from the two previous stages to develop 

efficient hardware architecture for Convolutional neural networks. 

1.3 Our contributions 

In this research work, we make three major contributions corresponding to the three 

major stages mentioned above. 

For the first stage, we introduce optimized FPGA-based embedded hardware 

architecture for support vector machines. We introduce embedded software and hardware 

architecture to adapt an algorithm in different platforms. We design and integrate pre-

fetching and burst transfer techniques to reduce the memory access latency and to 

facilitate real-time processing. We provide different configurable option for mathematical 

kernels, which enables the user to select and utilize the most suitable kernel for linearly 

and non-linearly separable data. We also introduce a generic chip-level hardware support 

for convex optimization and achieved substantial performance gain to process large-

volume of data. 

Our second major contribution is the design space exploration using parallel 

systolic arrays. We introduce efficient and unique embedded hardware architecture with 

systolic array configuration to accelerate both training and inference for data 

classification. Based on the experimental analysis, we illustrate architectural tradeoffs to 

distinguish the critical and main contributing factors for hardware acceleration. We 
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address and overcome the associated constraints of embedded platforms such as 

limitations of hardware IPs capabilities and incorporating the IP modules for SoC design. 

For the third major contribution, we utilize the outcome from stage 1 and stage 2 

to build efficient neural network hardware architecture to support on-chip AI 

acceleration. We introduce the design methodology which illustrates the fundamental 

characteristics to take advantage of inherent parallelism nature of the deep neural 

networks. This design methodology also aims to improve the current platforms to 

develop a framework for ensemble architecture to cater for specific requirements of 

certain application with no additional cost. 

1.4 Dissertation organization 

The Dissertation is organized as follows: 

In this chapter, we have presented a brief overview to introduce embedded 

platforms, machine learning, our objectives and motivations for our research work. 

In chapter 2, we present the background study for different means of hardware 

support including general-purpose processor, ASICs, GPUs & FPGAs. We discuss the 

framework for hardware and software architecture. We present the details of existing 

works on hardware implementations for similar machine learning algorithms. 

In chapter 3, we present our design approach, system-level architecture, and novel 

techniques to support machine learning applications are detailed in this chapter. Our 

novel, unique, customized and optimized FPGA-based embedded hardware accelerator 

for three stages of CO-based SVM algorithm is introduced along with our embedded 

software design.  
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In chapter 4, we present background study for systolic arrays, description for the 

design approach and framework of parallel systolic configuration for hardware 

accelerator. Experimental results and analysis are reported. Experiments are carried out to 

illustrate the feasibility and scalability of the embedded design for machine learning. 

In chapter 5, we present the architectural details for deep neural networks and 

discuss the potential of ensemble architecture for different applications. Discussions for 

experimental results and analysis in terms of timing, speedup, area, and accuracy are 

reported.  

In chapter 6, we summarize our contributions with concluding remarks and future 

directions for our research work.  
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CHAPTER 2  

BACKGROUND STUDY 

In this chapter, we present the background study for our research. Recently, 

machine learning applications are commonly implemented on embedded devices because 

of low cost, low power, portable, high performance etc. [5]. In section 2.1, we discuss 

various means of computing platforms for application specific operations. In sections 2.2, 

we elaborate on the framework for machine learning applications and techniques. Also, 

we discuss the optimization techniques utilized by the machine learning algorithms to 

improve the reliability of the machine learning applications. We provide the details about 

the existing work on hardware support in this section.  

In this chapter, we provide the necessary mathematical equations to illustrate the 

development of classification algorithm; however, for extensive details about the 

derivation of these equations, data visualization we refer to the related materials in the 

existing literature. Few recommended pre-requisites include fundamental concepts of 

digital design flow, logic synthesis, RTL design for hardware architecture, probability 

theory for machine learning, linear algebra and calculus.  

2.1 Hardware Platforms 

In this section, we discuss about the various means of computing platforms 

suitable for different application domains. Some of the most commonly used hardware 

platforms are general-purpose processor, application-specific integrated circuits, graphic 

processing units and reconfigurable devices [6]. The anticipated new-emerging 

technologies such as quantum computing, photonic computing and other exascale 
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computing projects are beyond the scope of this research work. In the following 

subsections, we discuss brief overview of each of them. 

2.1.1 Microprocessors 

The general-purpose micro-processors are the most predominant computing 

platforms widely used in all the desktop computers, laptops etc. Microprocessors are 

designed to execute specific set of arithmetic & logical operations and provide high 

flexibility to develop large number of applications [7]. In the past few decades, 

significant research work has been devoted to improve the performance by incorporating 

different techniques and methodologies.  

The flexibility offered by a microprocessor comes at the cost of inferior 

performance for specific applications. Power consumption of these devices is much 

higher and is not suitable for specific applications. Power consumption is a critical issue 

for portable and embedded devices [8]. In order to address this issue, Application 

Specific Integrated Circuits (ASIC) plays a major role to overcome the power issue, 

including others such as area. We discuss the details of the ASICs in the following sub-

section. 

2.1.2 Application Specific Integrated Circuits (ASIC) 

Unlike microprocessor, ASIC are dedicated hardware module for a particular use. 

Application-Specific Integrated Circuits (ASIC) as the name suggests it is application 

specific IC targeted to perform a specific task [9]. Since these integrated circuits are 

customized to perform only a specific task, these devices are small, fast, power efficient 

systems with minimal routing & timing issues. However, the applications cannot be 

modified once after the device is fabricated compromising the flexibility criteria. In case, 
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any additional functionality needs to be added to the existing chip design, it requires re-

fabrication, which in turn a time consuming process. Many companies have developed 

their own AI chips to support and accelerate the current global demand for AI 

applications. 

2.1.3 Graphics Processing Unit (GPU) 

Graphic processing Units (GPU) are specialized devices to accelerate and perform 

mathematical computations primarily for graphic display devices. Recently, there is a 

growing interest to utilize GPU for non-graphic applications [10] [11]. GPUs have 

thousands of cores per chip favorable for high-performance computations with high 

memory bandwidth. Most of the applications implemented on a CPU will most likely 

utilize the GPU as a co-processor design to accelerate an application. These devices have 

shown significant improvement for applications ranging from graphic displays to 

scientific computing. Although GPUs provide high computing power but they are 

expensive devices with high power consumption. In order to utilize the full potential of a 

GPU requires a great deal of efforts from the user/designer. 

2.1.4 Reconfigurable computing platforms 

Field programmable Gate Arrays (FPGAs) are one of the most popular 

reconfigurable devices [12] [13]. Due to their inherent nature of re-programmability, a 

number of different applications can be efficiently developed and prototyped for faster 

time-to-market requirements. FPGAs also offer other useful solutions to develop complex 

design such as providing embedded processor, DSP blocks, ready-to-use IP cores, custom 

IP cores, I/O interfaces etc [14]. The important factors such as low-power requirements, 

less system cost, adaptable platforms provides an opportunities to design a high-
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performance computing platforms for large-scale data applications such as machine 

learning. However, the run-time to translate and map an RTL design takes significant 

amount of time and in certain cases routing the individual blocks fails due to limited 

interconnect resources. In such cases, the user needs to carefully modify the design to 

meet the synthesis rules. 

2.2 Machine learning 

Machine Learning (ML) is one of the most important research areas and is 

continuously evolving in many different fields. Some of the interesting areas of 

applications are autonomous cars, biometrics, computer vision, geo-statistics, medical 

diagnosis, speech recognition, automated trading platforms, hand writing recognition, 

virtual personal assistant etc. [15]. According to a market research [16], the global market 

for machine learning was $1.4 billion in 2017 and is expected to reach $8.8 billion by 

2022 with an annual growth rate of 43.6%. The aforementioned facts demonstrate that 

machine learning market will continue to thrive as smart and autonomous systems 

emerge.  

Machine learning, a subset of artificial intelligence which enables a system to 

learn, identify patterns, and make decisions without being explicitly programmed, and 

with minimal or no human intervention [15]. In these fields, the system should be capable 

of making critical decisions based on primary characteristic features. Machine learning 

typically involves many important data mining tasks, and can be categorized into 

supervised learning (i.e., classification) and unsupervised learning (i.e., clustering) [15]. 

The basic premise of machine learning is to create techniques that can learn from the 

sample input data (known as the training data), by performing statistical analysis, in order 
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to make accurate predictions or decisions on the data [17]. With the advent of smart and 

autonomous systems, machine learning is becoming the cornerstone in creating these 

systems, in which an autonomous car making a decision to determine the type of object in 

front. Also, in the field of medical diagnosis, these decisions have helped many doctors to 

diagnose whether a certain tumor is malignant or benign.  

In the following sub-sections, we briefly discuss the necessary details required for 

illustrating our hardware implementation in section 3. Although, we provide the 

necessary mathematical equations to describe certain concepts of the classification and 

mathematical optimization, we also direct to specific proceedings for extensive details. 

2.2.1 Classification of Machine learning 

Developing a machine learning models require a specific set of data called 

training set and testing set. Each set of data samples consists of an input vectors, denoted 

by x. Each input vector, x is composed of N number of features representing a specific 

characteristic of the associated datasets called training set, denoted by {x1, x2, x3,…,xN}. 

Each training set is systematically categorized into respective output labels called target 

value, denoted by yt. On the other hand, testing sets includes only the input vectors and 

the machine learning will predict the associated target values based on the features 

learned during the training process. The performance of the machine learning algorithms 

is evaluated based on the ability of machine learning models to categorize correctly; this 

is known as generalization [15]. 

Based on the utilization of the datasets, machine learning is broadly classified into 

supervised learning, unsupervised learning and reinforcement learning. Each learning 

process involves training and testing stages. From [18], the four popular subclass 
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involved in machine learning process are clustering, Classification, Regression and 

Dimensionality Reduction. Clustering (unsupervised learning) [19] and Classification 

(supervised learning) are most commonly used and plays a crucial role to determine the 

category of an input sample. A regression method predicts the outcome of an input data 

based on certain attributes and dimensionality reduction technique helps us to distinguish 

between the non-trivial feature vectors. For our research purpose, we will limit our focus 

to classification methods. 

In supervised learning, the machine learning models is trained using a set of pre-

defined input vectors and output labels (training set). If the output vectors are to be 

evaluated and assigned to a finite number of categories, such a process is called as 

logistic regression, also referred as classification. Examples for classification are 

handwriting analysis [20], cancer diagnosis [21], predicting stock prices [18] etc. On the 

other hand, if the output values involves more than one continuous variables, such a 

process is knows a linear regression. Examples for linear regression include real-estate 

price analysis, melting of polar ice caps etc. 

In unsupervised learning, the training set consists of only the input vectors 

without the corresponding output labels [15]. In this process, a model groups similar set 

of data to predict future outcomes, this is called as clustering. Examples for unsupervised 

learning include grouping customers based on their purchasing habits, grouping 

astronomical objects etc. In the unsupervised learning, an association rule is also often 

used to discover patterns that describe large portions of the available data sets, for 

examples, customers in a specific group also tends to buy from other facet. Association 

based learning is popular in the area of retail and logistics. 
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In the reinforcement learning, the objective is to maximize the rewards by 

identifying a suitable action for a given situation [15]. The machine learning models 

learns based on multiple attempts to learn from trail-and-error basis. For example, 

reinforcement involves training a computer to play chess by thousands of trails and 

exploring possible suitable action for a given situation.  

In this research work, we focus on supervised learning (specifically, 

classification) techniques. Classification techniques are employed by many machine 

learning applications in various domains including medical, finance, and transportation. 

There exist many classification algorithms; hence, selecting a suitable algorithm for a 

specific application (or dataset) would significantly impact the accuracy of the results as 

well as the overall system’s performance [15].  

For instance, employing a linear classifier for non-linear separable data can 

diminish the accuracy and efficiency of the results, which in turn can hinder the 

subsequent analysis [15]. As a result, we investigate different classifiers (or classification 

techniques/algorithms) utilized for machine learning applications. Next, as a case study, 

we decided to focus on the Support Vector Machine (SVM) classification algorithm [22] 

[23] [24] [25], since SVM has many advantages/traits that are deemed suitable for 

machine learning applications.  

For instance, SVM is more appropriate for classifying non-linear separable data 

[26], enables classification in multi-dimensional space [24], is capable of handling high 

dimensional data [27], and generate high accuracy results [27], [24]. In addition, the 

accuracy and classification process of the SVM can be further improved by incorporating 

non-linear optimization methods to find the optimal solutions [27]. Hence, we decide to 
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integrate the convex optimization (a widely used non-linear optimization methods) to the 

SVM classifier in order to clearly distinguish between the two separate classes by 

maximizing the margin width of the hyper-plane, which in turn leads to an optimal 

solution [27].   

2.3 Support Vector Machines (SVM) 

The support vector machine (SVM), first introduced by Cortes and Vapnik in 

1995 [28], is one of the novel machine learning techniques, based on the statistical 

learning theory [29]. The SVM was initially developed for classification tasks, and was 

later extended to regression analysis [30]. As stated in [15], [31], the SVM classifies the 

data points based on its location with respect to the hyper-plane. We investigate the 

published literature to get an insight into the concepts of the optimal hyper-plane, non-

linear optimization methods for SVMs, and decomposition methods for solving the 

convex optimization for SVM. 

For instance, SVM is more appropriate for classifying non-linearly separable data 

[26], enables classification in multi-dimensional space [24], is capable of handling high 

dimensional data [27], generate high accuracy results [27], [24], and can be extend to 

regression problems. In addition, classification process of the SVM can be further 

improved by incorporating non-linear optimization methods to find the optimal solutions 

[27]. Comparison of SVM with the most commonly used neural networks is as follows:  

• SVM are favorable for applications with limited availability of data samples 

compared to neural networks. 

• The neural network has shown some significant performance over the past few 

years compared to SVM, but they are data hungry learning algorithms. In order to 
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train a neural network to achieve high accuracy output, we need massive amounts 

of data. However, for certain applications, the availability of data is limited.  

• Also, training a neural network requires spatial property, which means the order 

of the input training samples determine the final output of the classifier. Changing 

the input order has little to no effect on SVMs.  

• Tuning the neural network hyper-parameters for a specific application is time-

consuming and a tedious process. On the other hand, we can analyze the hyper-

parameters of SVM by examining the values and determine a certain threshold.  

• Since our aim is to provide a hardware support, we are designing the embedded 

architecture on a hierarchical approach for both the classifier, which is beneficial 

to configure the design to utilize shared resources. Since, SVM and NN share 

some of the common operations; our hierarchical platforms can be easily 

modified to utilize the generic IP modules for either of the classifier. 

Embedded hardware architecture and acceleration solutions are relevant to almost 

all the machine learning classifiers due to the recent accumulation of large-volume of 

data. However, most of the classifiers fail to process high-dimensional features in large-

volume of data. Due these limitations, neural networks, support vector machines and 

random forest data classifiers are among the top three classifiers in the field of machine 

learning [32]. Although, these aforementioned classifiers are formulated to process high-

dimensional data, the execution time increases exponentially with respect to the number 

of data samples. In order to improve the execution time, any optimization from software 

perspective would be insufficient. Customized hardware architecture is essential in order 

to reap actual benefits from these classifiers for real-time applications. 



 
 

17 
 

2.4 Existing research work on hardware support for SVM  

We surveyed the existing research work on hardware support for the SVM 

classifier. In this regard, we investigated ways to utilize Field Programmable Gated 

Arrays (FPGAs) to design, develop, and implement high-dimension, large-scale data 

classifier. We performed an extensive investigation on the existing works on FPGA-

based hardware architectures for CO-based SVM algorithms in the published literature. 

Additional detailed analysis of other existing works can be found in some survey papers 

such as [33] [34].  

FPGA-based parallel processing hardware architecture was proposed for SVM 

using stochastic gradient descent (SGD) as the training method, in [35]. The authors 

demonstrated the scalability of the SGD approach for SVM in terms of fixed-point vs. 

single-precision floating-point computations. The hardware design was generated using 

the Xilinx System Generator design tool, and executed on Xilinx ML605 board with 

Virtex-6 FPGA. In this case, the synthesis results were obtained and reported, in terms of 

area, time, and throughput; however, the classification accuracy results were not reported. 

From the results, it is evident that parallelization led to the increase in occupied area, thus 

confirming that higher speedup due to parallelization, comes with the penalty of larger 

occupied area on chip. The proposed design could have demonstrated to execute datasets 

with more than 4 features/attributes, which is indeed a limitation when executing large 

volume of data with many attributes. Conversely, our proposed design can execute 

datasets with varying sizes and with any number of features/attributes.      

In [4], an energy-efficient embedded binarized SVM architecture was proposed 

and implemented on an FPGA. The computation kernels were designed in C/C++ and 

transformed into HDL using Xilinx HLS (high-level synthesis) tools. The proposed 
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hardware design was executed on Xilinx Virtex-6/7 FPGAs. The results were obtained 

and reported, in terms of area, speedup, power, and classification accuracy. The FPGA’s 

performance matric results (especially speedup and power) were compared with that of 

the CPU and GPU. From the results, it is evident that FPGA and GPU achieved 

significant speedup compared to the CPU. However, the power consumption of the GPU 

was significantly higher than that of the FPGA. These results illustrate that FPGA-based 

hardware architecture for SVM can achieve better performance-per-Watt, thus suitable 

for embedded devices with stringent power requirements.  

An FPGA-based hardware accelerator was proposed for approximate SVM in 

[36], utilizing two approximation techniques, including precision scaling and loop 

perforation. The hardware was designed using Xilinx Vivado HLS tool, and executed on 

Xilinx Zynq7 ZC706 board. The results were obtained and reported, in terms of area, 

speedup, and classification accuracy. From the results, it is evident that the approximate 

computing led to higher speedup, but with the penalty of larger occupied area (or 

resource utilization) on chip, and lower classification accuracy. In some cases, the 

significant accuracy loss did not compensate with significant increase in speedup.  

In [37], an FPGA-based hardware design was proposed for SVM classifier. In this 

case, three variable-size SVM models were implemented using different optimization 

techniques. The proposed hardware was designed using Xilinx Vivado HLS tool, and 

executed on Xilinx Zynq7 ZC702 board. The results were obtained and reported, in terms 

of area, speedup, power, and classification accuracy. Also, in this paper, the training 

phase was done offline on software; hence, the support vectors were pre-computed, and 

forwarded to the proposed hardware design, which is created only for the testing phase.  
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An FPGA-based parallel processing architecture was proposed in [38] for training 

phase of SVM using Sequential Minimal Optimization (SMO). The proposed hardware 

design was executed on Xilinx Virtex-6/7/Ultra-scale FPGAs. The synthesis results were 

obtained and reported, in terms of area, throughput, and speedup; however, the 

classification accuracy results were not reported. In this case, the authors utilized the 

hardware friendly kernel (HFK) for SVM training, which leads to reduction in precision 

of the floating-point operations. Although marginal loss in accuracy is acceptable for 

testing, utilizing HFKs for training would result in an inefficient construction of a hyper-

plane during training.  

In [39], a FPGA-based hardware-software co-design was proposed to accelerate 

the SVM algorithm by utilizing a two-level approach: first to optimize the global 

structure of the SVM; and second to refine it through the design exploration. The 

proposed architecture was designed using Xilinx Vivado HLS tool, and executed on 

Xilinx Zynq Zedboard. The results were obtained and reported, in terms of area, latency, 

and speedup; however, the classification accuracy results were not reported. As authors 

indicated, for high values of SVM parameters, the resource utilization (i.e., occupied 

area) increased significantly, which would be an issue for embedded devices with 

stringent area requirements. In this paper, the authors extensively discuss and analyze the 

advantages/disadvantages of utilizing the HLS tools to transform the designs written in 

C/C+ to HDL, thus providing insight into the HLS inefficiencies, which would be very 

useful when creating optimized hardware architectures in order to improve certain 

performance metrics, including the latency.  
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An FPGA-based coarse-grained reconfigurable hardware architecture was 

proposed in [40], for various machine learning (ML) algorithms, including SVM, 

decision trees, and artificial neural networks. The hardware was designed using Xilinx 

Vivado tool, and executed on Xilinx Virtex-7 FPGA. The results were obtained and 

reported, in terms of area, and speedup; however, the classification accuracy results were 

not reported. In this case, in order to change from one ML algorithm to another, authors 

claim that the reconfigurable processing nodes (RPNs) of the proposed architecture, can 

be reconfigured individually; however, no details are provided how this can be done. This 

requires partial reconfiguration of the FPGA; thus, adding significant complexity to the 

design process, which has not been addressed or discussed in the paper.  

A scalable FPGA-based architecture was proposed in [41] to accelerate the SVM 

classification. The hardware was designed in VHDL, and executed on Altera Stratix III 

EP3SE260 board. The results were obtained and reported, in terms of speedup; however, 

the occupied area was not reported. Furthermore, in this paper, the authors only proposed 

the hardware design for the testing phase. Hence, the support vectors were pre-computed 

and stored in the on-chip memory for subsequent processing during the testing phase. The 

same authors proposed a design flow for the SVM training phase in [42]. 

An FPGA-based design was proposed for decision boundary conditions using 

multiplier-less kernel implementation technique for image processing in [43]. In this 

case, only the classification step of the SVM was implemented using the proposed 

multiplier less techniques to reduce power. However, the training process of SVM was 

computed offline using MATLAB, which in many cases requires the hardware support to 

improve the computational time. The support vectors obtained from the MATLAB was 
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stored in the FPGA’s internal memory and utilized for decision boundary conditions. In 

these scenarios, incorporating the multiplier less kernel technique might be useful in 

order to reduce power but which in turn might add execution time for the overall decision 

conditions. The power consumption was reported in the range of 1.479 to 2.051W for the 

multiplier-less kernel implementation, which is high for decision boundary condition 

computations.  

In [79], a hardware design based on the stochastic gradient descent algorithm for 

SVM was proposed. The authors demonstrate the scalability of the stochastic gradient 

descent approach of SVM for fixed-point vs. floating point computations. The hardware 

design was generated using the system generator tools. In regards to the system generator 

tools, details were not found related to any inefficiencies of the system generator tools as 

specified in [94]. Also, a brief comparison relative to the accuracy of the classifier would 

be applicable for exponent implementation using look-up table and other alternative 

approach. The comparison made in this paper could be in parallel in terms of seconds 

saved to improve the performance. 

In [82], the paper investigates the potential performance gain for SVM kernels 

and decision boundary conditions. The authors measure the performance of these 

operations on CPU, GPU and FPGA. Based on the results analysis, the speedup gain of a 

GPU and FPGAs are significantly higher than a general purpose processor. However, the 

power consumption of the GPUs is 50 times higher than a FPGA. This shows that the 

FPGA-based designs can achieve a better perf/W.  

An approximate computing approach to improve SVM performance was proposed 

in [83]. In this approach, algorithmic approximation such as precision scaling and loop 
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perforation was utilized. Approximate computing can result in a high speed performance 

and efficient power design at the cost of the accuracy of the machine learning model. 

Since machine learning models are expanding into many accuracy critical applications, it 

seems reasonable to consider a certain threshold for approximating. A speedup of 15x 

was illustrated with respect to the software counterpart. In order to analyze the details of 

the approximate computing, power consumption and computing time for generating 

support vectors may be beneficial. 

In [84], a FPGA-based design was generated using the ultrafast high level 

synthesis (HLS) design methodology instead of classic hardware description language. 

The design achieves a speedup of 36.98. However, linear kernels and decision boundary 

conditions were implemented, but the support vectors were pre-computed. The details 

related to the HLS inefficiencies can be highlighted in order to generate a optimized 

design.  

In [85], a parallel implementation of sequential minimal optimization for training 

was proposed. In this paper, the authors utilize a hardware friendly kernel to train SVM 

model. However, the hardware friendly kernels approach would be to improve the power 

consumptions but may lead to approximate computing. Specifically, for a decomposition 

approach, the accuracy depends on the numerical precision. Also, no details were found 

in regards to the exponent computations, memory management and decision boundary 

conditions. 

In [94], a co-processor design was proposed based on two-level methodology 

exploring the usage of design space techniques to produce an efficient accelerator by 

addressing the HLS inefficiencies. Although, HW/SW co-design may not suitable for 
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embedded mobile applications, one of our objectives is to provide a dedicated and 

independent hardware modules to achieve a higher speed up. Using a HW/SW co-design, 

the paper illustrates a speedup gain of 78x, however, the power consumption would lead 

to lower performance/W. The paper provides useful insights on the HLS inefficiencies, 

which are useful to develop a more optimized hardware design to achieve a better latency 

gain. 

In [97], a reconfigurable FPGA-based architecture was proposed for various 

machine learning algorithms such as Decision Trees, Support Vector Machines and 

Artificial Neural Networks. In this case, the paper aims to provide one universal solution 

for machine learning algorithm on hardware architecture. One universal solution seems a 

reasonable approach and by adapting the hardware for different applications, but the 

scalability to reconfigure might lead to increased place and route time with respect to the 

size of the application domain. Specifically, as the dimensions of the data to process in a 

machine learning increases, the choice of a specific machine learning solutions would be 

a tedious process along with the mapping the design on to the FPGA. However, the paper 

demonstrates a speedup gain of up to 66.71x, which illustrates the potential gain from a 

FPGA-based design, which can further be improved with optimized hardware 

architectures. 

In [42], a FPGA-based architecture is proposed for training heterogeneous 

linearly separable datasets. Regarding the scalability issues suitable for higher-dimension 

and large-scale datasets are not addressed and based on the architecture provided, the 

computational elements accomplish the linear kernel task and does not extend its 

applicability to solve non-linear applications. It should be noted that the hardware support 
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utilizes PCIe for accessing the data; it might not be suitable for embedded applications to 

utilize a PCIe due to limited hardware footprints. Therefore, utilizing one of the high-

speed communication protocols for the embedded platforms are efficient than large 

physical connectors to access data.  

A GPU-based design was proposed for data classification using Gilbert’s 

algorithms to evaluate the kernel functions [45]. The paper presented brief details about 

GPU and FPGA implementations, a brief internal architecture of the SVM training and 

testing process. Using CUDA, the GPUs are treated as a co-processor serving the host 

CPU. Based on the results, the speedup comparison of FPGA vs. GPU is linearly 

proportional to the dimensionality of the data. As the number of dimensions increases, 

the FPGA speedup increased linearly from 10 to 90x. Due to limited internal memory of 

FPGAs the speedup starts to saturate and decline for larger scale data sets. Since, GPU 

are high power consuming devices, power comparison for this approach would be highly 

applicable. Nevertheless, the FPGA showed better performance compared to GPUs. Also, 

in order to maximize the acceleration potential, GPUs need a host CPU to communicate, 

in turn adding the additional hardware resources. Therefore, for our design approach, we 

developed an efficient pre-fetching technique to overcome the issues mentioned above 

and provided independent and dedicated hardware design. 

In [46], a comparison for the SVM implementation on FPGA and GPU was 

proposed; it did not detail the hardware implementation of the SVM. The paper provides 

a brief idea of hardware implementation for the data segmentation application using 

SVM. The paper provides results in terms of speedup and power consumption for FPGA 

vs. GPU design. Based on the result analysis, FPGA outperforms GPU by a factor of 3.5 
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times and consume 17x less power than a GPU. This significant power consumption of 

GPU is evident to choose power efficient embedded platforms for large-scale data 

applications. The results suggest that the power consumption for GPU based design is 

250W and 15W for FPGA. Although, GPUs has high parallel processing capabilities but 

the cost and power constraints are a major threshold for large-scale data applications. 

Another comparison study for GPU vs. FPGA was proposed in [47]. In this paper, 

a speedup comparison was performed on different hardware at a wide price range. The 

hardware 1 is the Tegra K1 GPU costing at around $200, hardware 2 is Zynq-7000 FPGA 

at $400 and hardware 3 is the Tesla P100 HPC server costs over $8000. Based on the 

different price points, FPGA performed ~10x better compared to the regular GPU 

whereas, the P100 HPC server outperformed FPGA by ~3x. Considering the cost of these 

devices, the speedup obtained is marginal. The paper did not detail the SVM 

optimizations or power consumptions regarding these hardware implementations. 

In [48], a parallel implementation of FPGA as coprocessor was proposed for 

SVM. With this design, the speedup obtained was around 20x compared to CPU design 

consuming 10W power. Although, the design utilize PCI and FPGA as a co-processor to 

parallelize compute-intensive arithmetic operations, it is not suitable for mobile 

embedded platforms, which has stringent area and power restrictions. Considering these 

design constraints, our design is independent with less area and power suitable for mobile 

platforms. In additions, PCI module is suitable for static environment as compared to 

high speed AXI protocols. With the limited hardware footprints, our design is optimized 

and efficient embedded applications. 
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An FPGA-based implementation for SVM was introduced in [29] for 

telecommunication. In this case, only the SVM training phase was implemented on 

hardware. Some parts of the training phase, such as kernel and Q matrices, were also 

computed offline. In order for a data classifier to be efficiently utilized in real-world 

applications, it is imperative to design an adaptable training and testing modules on 

embedded platforms. Since the real-world is typically high-dimensional and large-scale 

data, training offline suitable for various static applications. However, it is not applicable 

for dynamic or mobile applications, in which the data access latency plays a major role. 

In [30], a coprocessor was introduced only for the kernel matrix computation of 

the SVM training. However, it is imperative to implement all the stages of both the 

training and testing phases on hardware, especially for real-time machine learning 

applications. Accelerating the kernel matrix computations is a part of the SVM classifier, 

which may not be efficient for application such as small-scale linearly separable datasets. 

Therefore, implementation of a generic SVM module including both training and testing 

process seems pliable for real-world data applications. 

In [31], a scalable FPGA-based architecture was proposed for the SVM algorithm.  

Although the proposed hardware classifier achieved a substantial speedup compared to its 

software counterpart, the design did not include techniques: to solve the constraint 

quadratic formulation, and to process and analyze the data in real-time. 

An FPGA-based accelerator was proposed for a different SVM algorithm known 

as least square SVM [49]. In this case, the SVM training was processed online utilizing a 

run-time reconfiguration framework and parallel processing architecture. This improved 

the speedup but with the penalty in area, which is not feasible especially for small 
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footprint embedded devices. Also, details regarding the stream of data to be processed for 

real-time classification needs to be addressed with regards to memory and 

communication protocols. 

From this investigation, it is evident that most of the existing works proposed 

hardware architectures either for testing or for training, but not for both. Furthermore, 

most of these proposed hardware architectures were not generic or parameterized. Also, 

most of these architectures were not designed with embedded devices in mind. None of 

these works proposed system-level architectures and associated techniques to facilitate 

real-time processing of machine learning applications. Consequently, the existing works 

did not report the corresponding system-level area, and did not consider the associated 

memory access latency while reporting timing/speedup. As a result, we could not make 

any direct performance comparisons with the existing works on FPGA-based hardware 

architectures in the published literature. In summary, from this investigation, and to the 

best of our knowledge, we could not find any similar work as ours, in the published 

literature, that provides FPGA-based hardware accelerators for CO-based SVM, 

especially on embedded devices, nor could we find any similar work that proposed 

system-level architectures, which is imperative for the machine learning applications in 

real-world scenarios. 

Depending upon different approaches considered by many peers the following 

table below summarizes the existing research work over the past decade. Each article 

addresses specific problems to enhance the efficiency and adaptability of the machine 

learning algorithms for large-scale data applications. We have extracted the specific and 



 
 

28 
 

related details corresponding to hardware computing platforms to implement data 

classifier applications. 

All the implementations addresses hardware implementation of the SVM 

classifier and to accelerate certain arithmetic computations, however designing a generic 

and independent classifier requires addressing the main constraints such as memory 

access latency, floating-point IPs, exponential implementation, dynamic algorithms 

suitable for real-world data sets irrespective of linearly or non-linearly separable datasets, 

kernels utilizations. Maintaining a specific DSP and logic resources ration might provide 

guidelines in regards to accelerate the computations within area constraints however, the 

real-time data processing must be taken into consideration for developing efficient 

embedded hardware architectures.  

Unlike the existing hardware architectures for modules and sub-modules of SVM 

implementation discussed above, our FPGA-based hardware architectures are generic, 

parameterized, and scalable independent IP modules for both training and testing 

purposes. Our hardware designs are design for homogeneous and heterogeneous data 

sets, linearly and non-linearly separable data sets without changing the internal hardware 

architectures or affecting the occupied area of the chip. Based on the previous analysis on 

the existing architecture, our designs are optimized to consume significantly less power 

for the entire SVM process as opposed to partial implementation specified above. By 

providing generic and individual IPs for each stage, IPs can be used for any embedded 

applications that employ either entire SVM modules or any specific individual modules.  

As mentioned in the literature review in section 2, the existing research work does 

not address major issues and challenges for designing a generic, independent data 
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classifier. Therefore, we identify the constraints related to embedded platforms and 

address them accordingly: 

• Provide a system-level architecture for data classifier 

• an efficient pre-fetching techniques to reduce memory access latencies 

• implementation of Taylor series expansion to address IP modules limitations  

• generic embedded hardware design for various types of datasets (homogeneous and 

heterogeneous, linearly separable and non-linearly separable) 

• efficient decomposition implementation for convex optimization along with the 

boundary decision condition 

• implement adaptable and independent training and testing modules for real-time 

applications 

• accelerate both training and testing using parallel systolic array implementation 

• Compare speedup performance with respect to CPU design, software counterparts as 

well as hardware design with/without systolic array instances. 

Why Embedded hardware? 

Embedded platforms have certain advantages compared to general-purpose processor 

such as: 

• Low cost, less area and power requirements 

• Faster real-time computations, better performance 

• Customizable, reprogrammable. 

• designed to perform a specific task independent or part of larger system 

• High throughput to numerous data-intensive applications with critical time 

constraints 



 
 

30 
 

Why FPGA? 

• Large number of LUTs, DSP blocks and a hierarchy of different memory sizes, 

providing high level of design flexibility 

• Runtime re-configurability allows the design to be scalable and adaptive to different 

types of input data 

• FPGAs provide numerous advantages such as high parallelization, better 

performance, efficient prototyping capabilities, lower power etc. 

Table 1.01. Literature review 

Ref Contribution Platforms Resource 

utilization 

Acc 

(%) 

Speedup Pow 

(W) 

HW_

v1 

Kernels, 
Decomposition, 
boundary decision, 
memory 
management 

Xilinx Virtex-6 
ML605 

Slices-5216, 
(LUTs-12965, 
reg-12784), 
DSP-110, 
BRAM-118 

100 CPU-
3.1x, 
Software-
74x 

2.96 

HW_

v2 

Systolic Array Xilinx Virtex-6 
ML605 

Slices-8390, 
DSP-236, 
BRAM-118 

100 SW-107x 3.42 

 [50] GPUs, efficient 
memory 
management 

Intel i7,i9 
GeForce 
RTX2070, GTX 
1080Ti 

N/A 100 GPU1 vs. 
GPU2: 
140x  

N/A 

 [35] HW design 
generated using 
sys gen 

Xilinx-Virtex-6 Slices-25790, 
DSP-450  

100 CPU-
319x,  

N/A 

 [51] Testing Xilinx Virtex 
Ultrascale+ 
XCVU9P 

N/A N/
A 

N/A N/A 

 [52] Hyper-parameter, 
grid search 

Intel i7-6700K & 
NVIDIA 
GTX1080Ti 

N/A 100 N/A N/A 

 [4] Kernel & decision 
function 

Intel i7, Nvidia 
GeForce GTX 
Titan X, Xilinx 
Virtex-6/7 

 LUT-12072, 
DSP-320 

94 CPU-
2220x, 
GPU-
0.373x 

3.2,5
.4, 
1601 

 [36] Approximate 
computing, kernel 

Xilinx Zynq-7 
ZC706 

N/A 96 SW -15x N/A 

                                                 
1 CPU, GPU and FPGA power consumption 
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& testing 

 [37] HW/SW SoC, 
Linear kernel & 
Testing 

Xilinx Zynq-
7000 platform 

3% resource 
util., Slices-
13,830 

97 SW -
36.98x 

2.65 

 [38] Training-SMO, 
shift-add, 
simulation 

Xilinx Virtex-6 
XC6VLX240T-
1FF1156 

Logic cells-
106008 
(70.3%) 

N/
A 

SW-
1312x 

N/A 

 [53] Incremental/Decre
ment SVM 
(IDSVM) 

FPGA, 
MATLAB 

N/A N/
A 

SW-70% N/A 

 [54] Cascade SVM, 
kernels & testing 

Xilinx Spartan-6  
XC6SLX150T 

LUTs-45758 84 SW-
34fps 

10.4 

 [55] Pre-computation-
kernel  

Intel Xeon E5-
2640v4, Nvidia 
Tesla P100 

N/A N/
A 

GPU vs. 
CPU-
437x 

N/A 

 [56] Testing HW/SW co-
design Xilinx 
Zynq ZC702 

2.7% resource 
utilization 

97 SW-37x, 
GPU-7x 

1.69 

 [57] Testing, sys gen, 
Matlab-HW design 

Xilinx Virtex-5 N/A N/
A 

SW-60x 
Matlab 
simu. 

5% 
less 

[58]  Hyper-parameters 
using Bio-inspired 
opti.  

Altera Cyclone 
IV  
EP4CE115F29C
7 

Logic 
Elements-
44.7%, DSP-
70 

N/
A 

SW-
3.67x  

N/A 

 [59] Testing  Xilinx Virtex-5 Sl. reg, LUT, 
DSP-
11325,11467, 
12 

97 N/A N/A 

 [60] Two-level 
hierarchy for 
global & local 
matrix-matrix 
computation 

Intel i7, NVIDIA 
GTX,1080, 
GTX980 Ti, 
GTX Titan black 

GPU-61.65-
96.98% of 
2560,2816,288
0 cores 

100 GPU vs. 
GPU 
speedup-
12x 

N/A 

 [39] Acceleration for 
efficient SVM HW 
co-proc. 

Co-processor. 
Arm pro, Xilinx 
Zynq SoC  

N/A 98 SW-78x.  N/A 

 [47] Training-offline 
using LIBSVM-
3.2 

GPU, FPGA N/A 97 GPU vs. 
FPGA-
9.6x   

N/A 

 [61] Hybrid Zynq using 
HLS 

HW/SW co-
design, Xilinx 
Zynq 

N/A N/
A 

N/A 1.73 

 [62] Multiple SVMs, 
partial out. 
combined & 

Multiple proc. N/A 100 CPU-35x N/A 
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filtered 

 [40] Reconfig. arch for 
DT, SVM, ANN 

FPGA N/A N/
A 

SW-
66.71x 

N/A 

 [63] IPM for based on 
Incomplete 
Cholesky 
Factorization 

CPU-GPU 
cluster. Intel i7, 
NVIDIA GTX 
480 

N/A 98 CPU vs. 
GPU-
36.68x  

N/A 

 [64] Training for cloud Cloud N/A 100 N/A N/A 

 [65] Efficient reconfig. FPGA N/A N/
A 

Reconfig.
-8x 

N/A 

 [66] Scaling to 12 cores Xeon E5, Phi 7 
110P, Tesla 
M2090,GK110 

N/A 100 84x2, 
429x3 

6394  

 [67] Cascade SVM, 
hybrid arch, 
boosted by NN 

Xilinx Spartan-6 
XC6SLX150T 

LUT-35532, 
DSP-59 

80 40fps 9.9 

 [68] kernel, hybrid 
working set in co-
processor 

Co-processor. 
Xilinx Virtex-7 
VC707 

N/A N/
A 

CPU-25x N/A 

 [69] Multithread 
parallel framework 
for GPU 

GPU. NVIDIA 
GeForce GTS 
250 

N/A 98 CPU vs. 
GPU - 
15.21x 

N/A 

 [43] Training in 
Matlab, testing in 
HW 

Co-processor. 
Matlab 

N/A N/
A 

N/A 2.05 

 [70] Testing, Mac units, 
synthetic dataset 

FPGA N/A 99 N/A N/A 

 [71] Multiplier-less, 
kernel-systolic 
array  

FPGA N/A N/
A 

N/A N/A 

 [72] Testing XilinxV5 & 
Spartan-3E 

1-3% slice 
registers 

100 N/A N/A 

 [73] Convex quadratic 
prog. IPM 

NVIDIA GTX-
480 

N/A 97 CPU vs. 
GPU-3x 

N/A 

 [74] IPM with ICF, 
Sherman Morrison 
Woodbury 

Intel Xeon 
E5620 with 
4xNVidia Tesla 
C2050 

N/A 100 8x, 40x5 N/A 

 [46] Testing, Gaussian 
kernel, co-design 

GPU, FPGA N/A N/
A 

CPU-
42x. 
GPU-(-

15, 
2506  

                                                 
2 Speedup of MIC and Ivy bridge 
3 Speedup in terms of GPUs and CPU 
4 (Gisette - 59W, Epsilon-104W, Dna-137W) + 502W system power 
5 GPU 8x the LIBSVM. P-PDIPM on GPU is 40x than S-PDIPM on CPU 
6 15W for FPGA and 250W for GPU 
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3.5x) 

 [75] Cascade SVM, hw 
reduction util.  

Xilinx Virtex-5 43% less 
hardware 
resources 

98 70fps and 
5x  

4.1 

 [76] Online detection, 
testing, pre-
computed SV 

Xeon X5650, 
Xilinx Virtex-5 
XC5VTX240 

Occupied 
slices-32,679 + 
acc. cards 

98  10Gbps N/A 

 [77] Posterior 
probability for 
testing, simulation 

FPGA. Xilinx 
Virtex-5 

N/A 97 N/A N/A 

 [78] Kernels NVIDIA-
8800GTS, 
NVIDIA GTS-
250 

N/A N/
A 

CPU-9x N/A 

 [79] Simulation, 
training offline, 
SVs stored 

FPGA-
simulation. 
Xilinx Virtex-4 
XC4VSX35 

~200MHz, 
Slices (lin, 
non-lin):849-
7261 

98 SW-407x N/A 

 [80] SVs in memory 
banks, kernels, 
testing 

FPGA. Xilinx 
Virtex-5 ML505 

Slice LUTs: 
57296  

78 122fps N/A 

 [42] Training-linearly 
sep 

FPGA N/A N/
A 

N/A N/A 

 [81] HW-SVR & SVM. 
Training-Matlab 

Altera EP2C20 
Cyclone II 

Logic 
elements-75% 

N/
A 

N/A N/A 

 [41] SVM – Testing FPGA N/A N/
A 

CPU-3x 
GPU-7x 

N/A 

 [82] PC, frame grabber 
board + FPGA + 
GPU 

Multi-platform LUT-28616 for 
FPGA 

95 N/A N/A 

 [83] Sparse matrix 
computations for || 
SVM 

NVIDIA 
GeForce 
GTX470 

N/A N/
A 

GPU vs. 
CPU-
133.8x 

N/A 

 [84] SMO, avoided 
numerical 
instability issues 
exists in traditional 
algorithms 

Xilinx Virtex-4 
XC4VLX100 

~30% slices, 
DSP48-90% 

N/
A 

Speedup 
relative 
ECU 
units-20x 

N/A 

 [45] Gilbert's 
Algorithm 

GPU, FPGA N/A N/
A 

55x N/A 

 [48] Co-design Co-processor N/A N/
A 

CPU-18-
21x 

10 

 [85] Systolic Chain of 
PEs. Pre-computed 
SVs. 

FPGA. Xilinx 
Virtex-5 

N/A 88 ~33fps N/A 
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 [86] Two schemes-
Logic elements & 
soft-core proc 

Altera Cyclone 
II 

Logic 
elements-
116750 

100 Software-
41x 

N/A 

 [44] Training non-lin  FPGA N/A N/
A 

CPU-3x N/A 

 [87] Meta-heuristics, 
Variable 
neighborhood 
search 

Embedded + 
FPGA + DSP + 
Intel Xeon 5320 

N/A N/
A 

N/A N/A 

 [88] Feed-forward 
phase 

FPGA N/A 5.97 N/A N/A 

2.5 Chapter Summary 

In this chapter, we discussed about the various means of hardware support for 

application specific operations. We provided framework details of machine learning 

techniques and applications. We elaborated on the mathematical procedure to construct a 

classification algorithm and optimization techniques. Existing work related to hardware 

support for the machine learning applications are presented. In the next chapter, we 

present the details about the architecture and implementation details for developing these 

complex algorithms on the embedded systems platforms.  

                                                 
7 Error rate 
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CHAPTER 3  

OPTIMIZED HARDWARE ARCHITECTURE FOR SVM CLASSIFIER 

Our main objective for this research work is to provide efficient and optimized 

hardware architecture to accelerate the machine learning algorithm, specifically support 

vector machines. In the section, we discuss in detail about the design implementation 

starting with system-level architecture, pre-fetching modules to reduce the memory 

access time, custom IPs for classifications and performance evaluation.  

3.1 Background: Convex Optimization and Support Vector Machines 

In the following subsections, we discuss the mathematical representation to build 

an optimal hyper-plane, formulate the objective function to optimize the SVM algorithms 

and creating a feasible model suitable for large-scale datasets by incorporating the 

decomposition techniques. 

3.1.1 Optimal Hyper-Plane  

The SVM is a commonly used classification technique found in many different 

fields, such as digital channel equalization in signal processing, and protein structure 

prediction and cancer detection in medical diagnosis [26]. In this case, the concept is to 

formulate a hyper-plane with maximum margin width to distinguish between two classes 

[15], [31]. It is a supervised classification method [15], which often involves a training 

set of {xi, yi}, where x is the set of input data samples/vectors, i: total number of samples 

and y is the output label of the binary classifier, used for identifying the class of the data 

sample. These are represented in equation (1).   

� = ���, ��, �� … �
�∀
, �
 ∈ ℜ� 

      �
 ∈ �−1, +1�,     (1) 
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Each input  vector  x, constitutes different features of a dataset represented as,  

xi={xi1,xi2,xi3,…,xin},  where, n  is the number of features. The formula for the hyper-plane 

[15] [24] [28] [25], and the decision function to determine the class are represented by the 

equations (2) and (3), respectively.   

   �
 ∈ �x��, x��, … , x���, where, n is the number of features 

  y��w. x + b� −  1 ≥ 0 where, w: weight vector, b: bias value      (2) 

   f�x� =  sgn�w. x + b�           (3) 

where, w is the weight vector, and b is the bias value.   

The margin width of a hyper-plane can be obtained by projecting a unit normal 

vector ŵ to the optimal hyper-plane, as in equation (4) [15], [24].   

    margin width =  �||,||           (4) 

The SVM can typically be extended to a multi-class classification [28], in which 

the output label is represented as,y� ∈ �y�, y�, y�, … , y-�, where, m is the total number of 

classes. As stated in [24], the multi-class training process can be performed using one-to-

rest approach. With this approach, m different classes are trained independently, where 

one set of the input vectors forms the positive class, and the remaining input vectors form 

the negative class, in the hyper-plane. The classification process can further be carried 

out, similar to the binary classification. 

3.1.2 Non-Linear Optimization  

In order to improve the overall accuracy of the classification tasks, the margin 

width of the hyper-plane can be maximized using a non-linear optimization method [27], 

[28], [25]. With these methods, an objective function subjected to boundary constraints of 
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a hyper-plane can be derived from the equations (2) and (4) [15], [28]. The formula for 

the objective function is presented in equation (5), as follows:   

  y� ∈ �y�, y�, y�, . . . y.�, where, l: total number of classes    

   max, �margin� =  max, � �||,||�      

Objective function:  min, �� �|w�|� 

subject to  y��w. x + b� −  1 ≥ 0 ∀i    (5) 

Employing the duality theory and the Lagrange multipliers [24], [23], [25], we 

can efficiently calculate the local maxima or the local minima of the objective function in 

equation (5) [27], [24]. From equation (5), the constrained optimization problem can be 

formulated similar to the non-linear programming/optimization [27], [25]. This 

constrained optimization problem can be presented as the primal and dual form as in 

equations (6) and (8) [24].   

Primal form, min  L�w, b� =  �� w� − ∑ α��y��w. x� + b� − 1�-�2�   (6) 

In order to obtain the minimum from equation (6), let’s consider the point, where 

the gradient is zero [24]. The minimum value for the primal form can be obtained by 

applying the partial derivatives with respect to w and b to derive the following formulae 

in equation (7).   

3 α�y� = 0-
�2�  

     w =  ∑ α�y�x�-�2�      (7) 

Duality theory is useful for the constrained optimization problem, since it 

provides a convenient way to improve the data classification by utilizing the non-linear 

optimization approach [27], [25].   
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Dual form, max  W�α� =  ∑ α�-�2� − �� ∑ α�α5y�y5. K�x�, x5�-�,52�    (8) 

The primal form (in equation (6)) can be solved using several methods [27], 

including Newton method, least squares algorithms, stochastic sub-gradient method, 

cutting plan algorithms, and interior point method. The dual form (in equation (8)) can 

also be solved using the decomposition methods and interior point method [27] [89] [90] 

[91]. The dual form has the advantage of utilizing mathematical kernels. Mathematical 

kernels are a set of algebraic transformation functions, which provides similarity 

information between data features [92], [93].  To use the mathematical kernels, the dual 

form depends on the pair of samples, such as K (xi. xj) as in equation (8). Utilizing the 

mathematical kernels, the SVM classification can be extended to non-linearly separable 

datasets [24] [94] [95] [93].   

After obtaining the local minima from equations (6) and (8), the optimal value for 

α is evaluated to identify the support vectors [27], [24], [25]. The support vectors are the 

input vectors closest to the hyper-plane, and have an α value greater than zero (α > 0) 

[27]. The dimensional co-ordinates of the support vectors determine the orientation of the 

hyper-plane. Any other vector may result in a closer to zero α value, which indicates that 

the data points have less impact on the orientation of the hyper-plane, and are also 

situated further away from the hyper-plane [24]. 

3.1.3 Convex Optimization  

Typically for large-scale applications, due to high volume of data, the constrained 

optimization problem presented in equation (8) must converge to the minimum value, in 

order to find a best fit for constructing an optimal hyper-plane [27] [96] [97].  
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As stated in [24], for convex optimization, all local minima are considered as 

global minimum. In this case, due to the presence of noise in some datasets, the soft 

margin parameters such as l-norm error parameter (penalty parameter, C and slack 

variable (ξ)) must be considered for a better generalization of the primal form [24] [27]. 

Since the aforementioned non-linear optimization/programming consists of an equality 

constraint, the dual form (in equation (8)) can be reduced to the general form of convex 

optimization problem by integrating soft margin parameters [23]. Hence, the overall 

objective function in equation (8) can be modified to the following equation (9).   

Dual form, objective function: min7 W�α� =  �� ∑ α�Pα5-�,52� − ∑ q:α�-�2�   
subject to 0 ≤ α� ≤ C 

     ∑ α�y� = 0-�2�       (9) 

The equation (9) is similar to the general form of convex optimization, as stated in 

[23], with the equality constraint and the box constraint, and can be written as equation 

(10) below.   

Dual form, objective function: min= f�x� =  min= �� x:Px − q:x 

subject to 0 ≤ Gx� ≤ h 

     A. x = b     (10) 

In convex optimization, the above objective function (in equations (9) and (10)) 

should converge in such a way that it satisfies the Hessian matrix condition [27] [25], 

which state that the contour of the convex plane should be continuously differentiable as 

in equation (11). Then, the optimal solution can be found where the gradient value is zero 

[24] [25].   
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@A@= ∗ @A@= ≥ 0      (11) 

In equation (10), the P matrix is symmetric and positive semi-definite; and both 

the objective function and the constraint function are convex [23] [25] [98]. Especially, 

for large-scale applications, the resultant matrices are dense, thus, difficult to solve. 

Therefore, the decomposition methods are often used to break down the convex 

optimization process by finding the two working sets [95] [99], as shown in equation 

(12). Proper selection of the “working sets” impacts the performance of the convex 

optimization algorithm and its convergence properties [27] [93] [25]. In this case, the 

process of finding the two working sets to determine the support vectors in the training 

set is a compute-intensive and an iterative process. Hence, by providing customized and 

optimized FPGA-based accelerators, we can dramatically enhance the speed-performance 

of these compute-intensive applications (or tasks).   

The decomposition methods, such as sequential minimal optimization, are 

employed to solve the non-linear optimization applications/tasks by sequentially selecting 

the working set based on the proximal point with respect to the objective function (in 

equation (9)) [25]. Considering the various methods employed to solve the non-linear 

optimization, the Sequential Minimal Optimization (SMO) is the most popular, due to its 

ability to handle large-scale datasets efficiently and effectively [89] [100] [101]. In this 

case, at each iteration, the input vector x (in equation (9)) is divided into two working sets 

as ��C, �̅C�, where, k is the current iteration count, xk is the current input vector, and �̅C is 

the previous input vector. Based on the specified starting point, the objective function (in 

equation (9)) is solved to converge to a minimum value [25]. More information, about the 
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equation (9), selection of the working sets, stopping criteria, and other methods to solve 

the non-linear optimization/programming, can be found in [23] [27]. 

For convex optimization (from equation (9)), a feasible point of (0, 0) is initially 

selected for the working sets, which is the first input data sample in equation (1). Then 

based on the direction of the gradient descent, the next working set is selected [23] [96]. 

Selecting the feasible point and the working set can impact the total time required to 

solve the convex quadratic optimization. As stated in [27], the solution for the convex 

optimization (in equation (9)) is found, by selecting the suitable working set, which 

satisfy the following criteria in equation (12).   

   max�∈E�7∗� F− ∇H�7∗�AI J ≤ min5∈K�7∗� L− ∇H�7∗�AM N    (12) 

In equation (12), the R (α) and S (α) is the index sets used to characterize the 

descent direction, and allow to state the optimality conditions. Based on the descent 

direction, the objective function (in equation (9)) converges to the minimum α value, 

which is used to determine the orientation of the separating hyper-plane [27] [24].  In this 

case, constructing the hyper-plane establishes an explicit distinction between the different 

classes of the data. 

3.2 Design Approach and Development Platform  

In our designs, both hardware and software versions of various operations/tasks 

are implemented using hierarchical platform-based and modular-based design approaches 

to facilitate component reuse at different levels of abstractions. As illustrated in Figure 

3.1, at the highest hierarchical level, our CO-based SVM algorithm comprises the 

training and testing tasks. During the training process, based on equation (9), the 

objective function is formulated to define the hyper-plane, to select a suitable 
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mathematical kernel, and to obtain the optimal solution. During the testing process, the 

decision function of the classifier is computed using the sign verification operation (in 

equation (3)). The aforementioned intermediate operations to process the training and 

testing tasks involve vector addition/multiplication, matrix computations, and various 

other arithmetic operations, which are placed at the lowest level of our platform-based 

design hierarchy. 

During our early design phase, we investigate and utilize the integer units and also 

the double-precision floating-point units as our FPGA-based IPs. From these 

experiments, the integer-based designs exhibit results with quite low accuracy, whereas 

the double-precision floating-point designs occupy larger area on chip. These facts 

illustrate that the former might not be suitable for real-time applications, which typically 

require results with high accuracy; and the latter is not necessarily suitable for the 

embedded devices with the stringent area requirements. Furthermore, for the high 

dimensional input vectors, the optimal solution for α could not be reached (in equation 

(9)), utilizing the double-precision floating-point units, since these units not only create 

large on-chip logic resources requirements but also high latency requirements. Hence, we 

strive to approximate the results for the double-precision floating-point units, without 

compromising the accuracy of the results. As a result, we utilize the single-precision 

floating-point units, which create a tradeoff among the accuracy and area, and power. In 

this case, most of the lower-level operators are designed and implemented using the 

single-precision floating-point units in the Xilinx IP core library. 
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Figure 3.1: Hierarchical and modular-based design approach. Our design includes a 

hierarchy of abstraction levels, where higher-level operations utilize lower-level 

functional modules 

3.2.1 Experimental Platform and Benchmark Datasets 

All our hardware and software experiments are performed on the ML605 FPGA 

[102] [103] [104] development platform [105], which utilizes a Xilinx Virtex-6 

XC6VLX240T-FFH1156 device. This development platform consists of large on-chip 

logic resources (37680 slices), 748 DSP48E1 slices, 512MB DDR3-SDRAM (Double-

Data-Rate Synchronous Dynamic Random Access Memory), and 2MB on-chip BRAM 

(Block Random Access Memory) [106].  It should be noted that our hardware 

architectures for CO-based SVM were created in such a way to be generic, 

parameterized, and scalable; hence, without changing the internal architectures, our 

hardware designs can be executed on different embedded platforms, including the 

platforms with recent FPGAs such as Virtex-7 chips. 
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The vector computations are designed in such a way by integrating the available 

DSP48E1 slices to enhance the speed-performance. The large 512MB off-chip memory 

resources are useful to store large datasets, typically found in many real-time machine 

learning applications.   

All our customized hardware modules are designed in mixed VHDL and Verilog 

[107], using Xilinx ISE 14.7 and XPS 14.7 design tools [108] [109] [110] [111]. They are 

executed on the aforementioned Virtex-6 FPGA running at 100MHz (in real-time) to 

verify their correctness and performance. The results and the functionalities of the 

hardware designs are further verified using the Modelsim SE, and Xilinx ISim tools [112] 

[113] [114] [115]. All our software modules are written in C++ and executed on the 32-

bit RISC Micro-Blaze soft processor [116] running at 100MHz on the same FPGA. 

Xilinx XPS 14.7 and SDK 14.7 tools are used to design and verify the software modules 

[117] [118] [119]. Unlike the hard processors, the Micro-Blaze soft processor must be 

synthesized and mapped on to the configurable logic blocks of the FPGA. The 

performance-gain or the speedup is evaluated using the baseline software execution time 

over the improved hardware execution time. The hardware and software execution times 

are obtained from the AXI Timer [120]. 

The overall speedup is evaluated and reported using two different benchmark 

datasets obtained from the UCI machine learning repository [121]: Wisconsin breast 

cancer diagnostic dataset [21] and Ionosphere dataset for machine learning [122]. The 

benchmark datasets used to evaluate our proposed designs have two classes to account 

for binary classification task. The Cancer benchmark dataset comprises two classes, 

known as “Malignant” or “Benign”; and the Ionosphere benchmark dataset also consists 
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of two classes known as “Good” or “Bad”. The Cancer datasets consist of 569 samples 

(or vectors), each having 30 features (or attributes) to describe the characteristics of the 

cancer cell nuclei. These cancer cells are obtained using a fine needle aspirate and the 

main features are obtained from a digitized image. The Ionosphere dataset comprises a 

set of phased-array data obtained from 16 high-frequency radars. It has 351 samples, each 

having 34 features to characterize the complex electromagnetic signals. The total sizes of 

these two datasets are 68,280 bytes and 47,736 bytes, respectively. 

3.3 Our Proposed System-Level Architecture  

Figure 3.2 demonstrates the system-level architecture for our embedded hardware 

and software designs. Since 2MB on-chip BRAM, on Virtex-6 FPGA on ML605 board 

[123] [124] [125], is not sufficient to store the large amount of data commonly found in 

many machine learning applications, we integrate the 512MB DDR3-SDRAM external 

memory into the system. In this case, DDR3-SDRAM and the DDR3-SDRAM memory 

controller run at 200MHz, whereas the rest of the system is running at 100MHz. As 

illustrated in Figure 3.2, we utilize the AXI (Advanced Extensible Interface) bus [126] to 

facilitate the communication among the peripherals at the system-level. 

During the initial software design phase, we configure the Micro-Blaze processor 

to have the maximum available cache memory of 128KB. However, this 128KB of cache 

memory is not sufficient to execute our software code and to process the data, since our 

code starts hanging. Hence, we vary the heap and stack size, and also increase the 

addressing of the cache memory to accommodate 256KB. This indeed resolves our cache 

memory constraint issue, although the Xilinx XPS tool still reports the size of the cache 

memory as 128KB. 
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Figure 3.2: Our Proposed System-Level Architecture. 
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software designs), reported in Section V, do not include this initial data transfer time via 

the RS232 interface. For our hardware design, we provide AXI4 burst/stream high-

throughput interface (via the AXI bus and the AXI Master Burst Controller) for 

streaming the data from the DDR3-SDRAM to our user-defined IP for real-time 

processing. One of our design goals is to create our system-level architecture in such a 

way to train and classify a continuous stream of data using the AXI4 burst/stream 

interface.  In a real-world application scenario, this feature enables proving a direct 

connection between our user-defined hardware IP and a camera, (for instance, in an 

autonomous car), in order to process the input data on-the-fly. This enables our hardware 

IP to perform the training and classification processes dynamically to cater to the ever-

changing environment. By streaming the data and processing the data directly, reduces 

the amount of memory storage required for the embedded designs.  

3.3.1 Our Proposed Pre-fetching Techniques and Top-level Architecture 

Classification techniques, such as CO-based SVM, for machine learning 

applications, often involves processing large volume of data. This enormous amount of 

data must be stored in the external memory and transferred to the embedded platform for 

processing, since the on-chip BRAM is not sufficient to hold this large volume of data. 

This in turn leads to significant memory access latency, thus impacting the overall 

speedup of the hardware accelerators. From our previous work [127], [128], it was 

observed that a substantial amount of time was spent on accessing DDR3-SDRAM off-

chip memory, which was a major performance bottleneck. Hence, it is imperative to 

address the memory access latency in our proposed embedded hardware 

architectures/accelerators.  
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In order to facilitate this endeavor, we create and integrate several design 

techniques to reduce the memory access latency as well as to enhance the speedup of our 

proposed embedded hardware architectures/accelerators. One of these techniques is the 

burst transfer. In this case, our user-defined hardware IP is designed to be enhanced with 

stream-in (or burst) data from the DDR3-SDRAM.  

From Section III.b, as in Figure 2, the AXI4-lite and AXI4 interfaces act as glue 

logic for the whole system, including the MicroBlaze processor, internal peripherals, and 

the user-defined hardware IP. AXI4-lite is a single transaction memory-mapped 

bidirectional interface. In our embedded hardware accelerator, the MicroBlaze 

sends/receives certain control signals, and also monitors the status of the user-defined IP 

via the AXI4-lite bus and via the slave registers (or software accessible registers). These 

32-bit slave registers are also used to send the SVM specifications, such as kernel type, 

dimensions of the input vectors, penalty/slack variables, to the user-defined IP, along 

with the initial memory address of the DDR3-SDRAM to access the datasets.  

In addition to the AXI4-lite, the user-defined IP reads/writes data/results from/to 

the DDR3-SDRAM via the AXI4 bus and the AXI Master Burst Controller. AXI4 master 

burst is a high-performance memory mapped interface capable of transferring burst size 

of up to 256 data beats, which are compatible with 16, 32, 64, and 128 data width with a 

single address transaction phase. With this data width, we can transfer up to 1MB (2n-1 

bytes) per cycle on IPIC command interface. By incorporating the AXI4 master burst 

capabilities (using the AXI Master Burst Controller), we dramatically reduce the memory 

access time for the SVM training and the SVM testing processes.   
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Figure 3.3: Pre-fetching Technique. 
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receiving the data from the DDR3-SDRAM, and store the data in the BRAM. Then the 

user logic can start the training process. In this case, the address generator is essential to 

index the correct values for matrix computations. After completing the training process, 

the AXI Master Burst Controller is designed to automatically setup for the write 

operation, in order to store the weight vectors and the bias values in the DDR3-SDRAM, 

for subsequent computations/analysis.  

Our proposed pre-fetching technique is illustrated in Figure 3.3. During the pre-

fetching mode, our user logic module (in Figure 3.3) determines the total number of bytes 

to be fetched utilizing the aforementioned SVM specifications provided by the Micro-

Blaze via the slave registers. Next, the address generator and the AXI master burst 

controller configure the control signals of the IPIC with a suitable data width, a burst 

length, and a number of beats per cycle. Then, the AXI master burst controller sends the 

aforementioned details about the data, as well as the “master read request” signal to the 

AXI interconnect core. Once the AXI master receives the “read request 

acknowledgment” signal from the AXI interconnect core, the user IP can start receiving 

the data from the DDR3-SDRAM, can store the data in the BRAM [129]. Then the user 

logic can start the training process. In this case, the address generator is essential to index 

the correct values for matrix computations. After completing the training process, the 

AXI master burst controller is designed to automatically setup for the write operation, in 

order to store the weight vectors and the bias values in the DDR3-SDRAM, for 

subsequent computations/analysis.  

Most of the existing techniques/algorithms for machine learning, including SVM, 

are typically designed in high-level programming languages such as python, and are 
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executed on general-purpose computers such as desktops and servers. These processor-

based (software-only) algorithms, in their current form, cannot be executed directly on 

the embedded platforms/devices, since these devices have numerous constraints including 

stringent area and power, limited memory, increased speedup, and reduced cost and time-

to-market requirements. Furthermore, today’s machine learning techniques/algorithms 

are becoming more compute and data intensive, requiring more processing power. For 

instance, the processing time for the training would increase exponentially with the 

number of input data samples. Also, for smart and autonomous systems, the data 

processing and analysis must be done in real-time, in order to make split-second 

decisions.  

Consequently, in order to satisfy the constraints associated with the embedded 

devices as well as the requirements of the machine learning applications, it is imperative 

to incorporate some applications-specific (or customized) hardware into embedded 

systems designs [130]. In this regard, Field Programmable Gate Array  (FPGA)-based 

hardware is one of the most promising avenues to deliver machine learning applications 

on highly constrained embedded platforms [131], not only because FPGAs provides 

higher level of flexibility than  ASICs (application-specific-integrated-circuits) and 

higher performance than software running on processor, but also due to its many 

attractive traits including post-fabrication reprogram ability, dynamic partial 

reconfiguration capabilities, and reduced time-to-market.   
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3.4 Embedded Architectures for Convex Optimization-Based SVM  

In this section, we introduce novel, unique, and efficient embedded architectures 

(both hardware and software) for the convex optimization-based (CO-based) support 

vector machine (SVM) classification algorithm.    

3.4.1 Embedded Software Design  

Although our main focus of this chapter is to introduce embedded hardware 

architectures/accelerators for convex optimization (CO)-based SVM algorithm, we also 

create embedded software architectures for CO-based SVM mainly to evaluate our 

proposed embedded hardware designs. Our embedded software for CO-based SVM is 

designed and developed on MicroBlaze soft processor on the same development 

platform. 

Prior to our embedded software designs, we design and develop the software for 

our CO-based SVM algorithm in C++ using the Microsoft Visual Studio development 

tools. This software design is executed on a desktop computer with Intel i7 processor 

running at 2.3GHz. Our results are compared and verified with the results from the open-

source python code obtained from [132]. Both the C++ and python results are also used 

to verify our results from our embedded hardware and software architectures.  

In order to cater to the resource constraint nature of the embedded devices, we 

significantly modify the aforementioned C++ software architecture, initially developed 

for the desktop computers. In this case, we create the codes leaner and simpler, in such a 

way to fit into the available program cache memory of the embedded microprocessor, 

i.e., MicroBlaze, without impacting the internal structure/flow and the functionalities of 

the overall CO-based SVM algorithm.  
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Figure 3.4: Software and Functional Flow for CO-Based SVM Algorithm 
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During our embedded software design phase, we encounter several issues due to 

stringent constraints of the embedded devices. One of the major issues is due to the 

limited memory resources. In this case, certain functionalities of the normal C++ 

programs, executed on desktop computers, can not be directly designed and implemented 

on the embedded devices. For instance, importing a pre-processor directive for vector 

computations, from the desktop computer to the embedded devices, resulted in memory 

limitations issues. In this case, we design a compact function in software that is capable 

of performing the vector computation efficiently and effectively. 

Furthermore, for our embedded software designs, the MicroBlaze processor is 

configured to have the maximum available cache memory of 128KB, from which 64KB 

is used for the Instruction Cache and 64KB is used for the Data Cache. However, this 

128KB of cache memory is not sufficient to execute our software code and to process the 

data, since our code starts hanging. To resolve this issue, initially, we vary the heap and 

stack sizes; and also increase the addressing of the cache memory to accommodate 

256KB. This indeed resolves our cache memory constraint issues, although the Xilinx 

XPS tool still reports the size of the cache memory as 128KB.  

Our embedded software architecture for the convex optimization based SVM 

algorithm comprises three stages. These three stages as well as the functional flow of our 

embedded software design are presented in Figure 3.4.   

3.4.2 Embedded Hardware Architecture for CO-based SVM Algorithm 

In this sub-section, we introduce our novel, customized, and optimized embedded 

hardware architecture for the convex optimization based SVM algorithm. In this case, we 

examine and analyze the functional flow of the aforementioned algorithm. Subsequently, 
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we partition this complex algorithm into three stages (SVM Module in Figure 3.3) to 

simplify the design process. The operations of these three consecutive stages are: 

mathematical kernels, convex optimization (or convex solver), and testing. It should be 

noted that the solver is considered as the hardware IP to perform the optimization stage.   

In this research work, we create our customized and optimized embedded 

hardware architectures for each stage as separate modules. The hardware designs for each 

stage comprise a data-path and a control path. The control path consists of finite state 

machines (FSMs), and manages the control signals of the data-path and the BRAMs. We 

also design a top-level module (i.e., SVM Module in Figure 3.3) to integrate the three 

modules for the three stages. The top-level module provides necessary 

communication/control among the three stages. The control path of the top-level module 

also consists of several FSMs, multiplexers, and tri-state buffers to control the timing, 

routing, and internal structures/functionalities of the designs.   

The three stages of the CO-based SVM algorithm are executed non-sequentially 

to utilize the parallel processing nature of the FPGA-based hardware. Initially, the first 

stage, i.e., the mathematical kernel, is processed until a certain amount of results is 

obtained from this stage. Then the p and q matrices (in equation 9), in the second stage, 

i.e., the optimization (or the solver), is computed on the aforementioned kernel results, 

while the remainder of the mathematical kernel is being proceed. In this case, the 

execution time to compute the p and q matrices is typically less than the execution time to 

compute the mathematical kernel; and the former depends on the results of the latter. 

Hence, we design and develop a simple counter to create a time delay in order to wait 

until the kernel has processed at least 50 training data samples, i.e., closer to 10% of the 
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total data size, before starting the second stage. Once the 10% of the mathematical kernel 

results (from stage 1) are available, stage 2 computation starts. At this point, both the 

stages 1 and 2 are executed in parallel. For all the stages, the intermediate/final results are 

stored in the BRAM, and after all three stages are processed, the final results are written 

to the DDR3-SDRAM.   

The internal architectures of these three stages of the convex optimization based 

(CO-based) SVM algorithm are detailed in the following sub-sections. These internal 

architectures are customized and optimized in such away by exploiting the inherent 

parallelism and pipeline nature of the CO-based SVM algorithm.  

3.4.2.1 Stage 1: Mathematical Kernels 

In the first stage of our embedded hardware design, we select and perform a 

suitable mathematical kernel. As stated in [94], linearly inseparable vectors in the input 

space can be transformed to linearly separable vectors in the feature space by mapping 

the data points to a higher dimensional space. This transformation can be performed with 

mathematical kernels (including linear, polynomial and Gaussian kernels), since the 

bound does not depend on the dimensionality of the space for SVM [24]. This is an 

efficient way to obtain a well-defined separating hyper-plane [92]. Mathematical kernels 

are a set of algebraic transformation functions, which provides similarity information 

between data features [93]. In order to utilize the mathematical kernels, the mapping 

function (Φ(x)) in equation (16) must satisfy the Mercer’s condition [92], which states 

that the inner product of the two input vectors must be defined for all the features, as 

represented in equation (13) below. 

   O��
, �i� = S��
�. S��i�       



 
 

57 
 

   ∫ ∫ k��
�O��
, �i�k��i� \�
  \�i ≥ 0    (13) 

In this research work, we decide to create customized and optimized embedded 

architectures for the Linear, Polynomial, and Gaussian Radial Basis Function (RBF), 

since these are the three most popular mathematical kernels used for the SVM algorithm. 

The equations for these three mathematical kernels are as follows [15]:   

Linear Kernel: OP�
, �iR =  �
 . �i      (14) 

Polynomial Kernel: KPx�, x5R =  �c +  x�. x5�m    (15) 

Gaussian RBF Kernel: KPx�, x5R =  eop�=Io=M�q
    (16) 

The datapath for the polynomial kernel is illustrated in Figure 3.5 (corresponding 

to modules 2), whereas the datapath for the linear kernel is the dotted lines of Figure 3.5 

(corresponding to modules 1). As shown, the datapath of the linear kernel consists of a 

multiplier, adder, and an accumulator register with the feedback loop to the adder, 

whereas the datapath for the polynomial kernel has a second adder and a power module.   

The result of the linear kernel is the dot product operation of the two input data 

samples. In this case, initially, the first two elements of the two data samples are read 

from the BRAM, which is the first two elements of the first row, and the multiplication 

operation is performed, followed by the accumulation operation on each multiplier result. 

This process will continue until this multiplication and accumulation (MAC) operation is 

performed on the last two elements of the two data samples. Then the final result of the 

MAC operation is forwarded and stored on the BRAM for subsequent 

analysis/computations. As depicted in Figure 3.5, the modules in the dotted line (in the 

green box) comprise the MAC operation.   
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For the datapath for the polynomial kernel, the inputs to the second adder (Add2) 

are the final result from the linear kernel as well as the coefficient c. This addition result 

goes through the power module to perform the “power of d” on the addition results. In 

this case, we create a hardware module for the power function using a simple loop to 

iterate the multiplication based on the specified degree (d) value. Although this degree 

value is parameterized in our design, a commonly used quadratic kernel is performed by 

considering this degree value as two (2). The final result of this power module (Pow in 

figure 3.5) is also forwarded and stored on the BRAM for subsequent computations. 

 

Figure 3.5: Datapath for Liner and Polynomial Kernels 

 

Figure 3.6: Datapath for Gaussian Radial Basis Function (RBF) Kernel 

The datapath for the Gaussian kernel is demonstrated in Figure 3.6. The Gaussian 

radial basis function (RBF) kernel is the most popular among the aforementioned three 
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equation (16), which is (xi-xj) 2, expanded into xi2+xj2-2xi.xj, which requires three dot 

product operations. Next, the addition operation is performed on the results of the two 

square operations, while the result of the MAC3 operation is multiplied by two. Then the 

multiplier result is subtracted from the result of the addition operation. The subtracted 

result is multiplied by the parameter known as gamma (γ). As stated in [132], this gamma 

(γ) parameter determines the influence of a data sample on the separating hyper-plane. In 

this case, the gamma (γ) value typically varies from 10-3 to 10+3 as needed. In this 

research work, as detailed in Section 3.4, we vary the gamma (γ) value from 2x10-3 to 

2x10+2 for both our embedded hardware and software designs. As shown in Figure 3.6, 

the result of the multiplier operation (with Mult2) goes through the exponent module to 

obtain the final result of the Gaussian RBF kernel. In this case, we create a parameterized 

exponent hardware module based on the Taylor series expansion, which is represented by 

the equation (17) [133] [134]. The final result of this exponent module is forwarded and 

stored on the BRAM for subsequent computations. 

   e= =  1 + x + =q�! + =s�! + =tu!  …     (17) 

The output size of the matrix for the kernel computation depends on the number 

of input data samples (m). Thus, the size of the K (xi, xj) matrix is m x m. After 

processing 10% of the data for the kernel computation, the convex optimization process 

is initiated. The computation to track 10% of the data processing is implemented using a 

simple counter. The kernel computation is necessary to perform all iterations of the next 

stage, which is the convex optimization. Hence, initially, the results of the mathematical 

kernel are stored on the BRAM to ease the iterative process of the convex optimization.  
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3.4.2.2 Stage 2: Convex Optimization  

The optimization stage is the most complex operation among the three stages of 

the convex optimization based (CO-based) SVM algorithm. In order to reduce the 

complexity, we divide stage 2 into three phases: parameter initialization, convex 

optimization, and bias value computation. In this stage, the dual form of the SVM (in 

equation (8)) is utilized to formulate the general convex optimization as shown in 

equations (9) and (10).   

3.4.2.2.1 Parameter Initialization Phase  

During the parameter initialization phase of stage 2, several parameters in 

equation (9) are computed including the objective function parameters (i.e., P, q), 

constraint parameters (i.e., G, h, A, b const), and other parameters (α, Grad, feasible point). 

In the convex optimization phase, α value and the Grad value are evaluated all the 

iterations using the sequential minimal optimization (SMO) decomposition method 

(detailed in chapter 2). Once the maximum number of iterations is reached, the bias value 

b is computed in the final bias value computation phase. This bias value is used to 

determine the intercept of the hyper-plane.   

In this chapter, for stage 2, we design a generic convex optimization solver 

utilizing the same naming convention for the parameters as the general form of convex 

optimization from equation (10). In this case, the naming conventions b and b const are the 

bias value (in equation (2)) and the constraints value (in equation (10)) respectively. The 

aforementioned objective function and constraint parameters are computed in Stage 2 

(phase I), as shown in Figure 3.4 (steps (b) and (c) respectively). 
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Objective function parameters: The P parameter (in equations (9) and (10)) is 

an m x m matrix, which is computed using the dot product of the output labels yi. yj. The 

y variable is the output label obtained from the dataset, and y represents the class of the 

data sample, as in equation (1). In our design, during stage 1, y is typically pre-fetched to 

the BRAM with the input samples. During stage 2, the result of the dot product (yi. yj) is 

multiplied with the result of the kernel matrix K (xi, xj), in order to obtain the P matrix 

(in equation (18)). In this case, as illustrated in Figure 3.7, the modules to compute the P 

matrix consist of a MAC unit and a multiplier (i.e., MAC1 Unit and Mul1 respectively, in 

figure 3.7). The elements of the P matrix are stored in the BRAM. The elements of the P 

matrix in the BRAM are accessed using two separate address generators, in order to 

create two sets of matrices Pset1 and Pset2. As stated in [15], for big data analysis, the 

size of the P matrix increases in squared term with the increasing number of input data 

samples; thus, performing the convex optimization using conventional methods such as 

interior point methods become computationally challenging.  To overcome this issue, a 

specific decomposition method in [95] is employed to perform the convex optimization. 

With this decomposition method, at any instance of time during the optimization process, 

two working sets are selected. This decomposition method is detailed in the subsequent 

convex optimization phase. The q parameter (in equations (9) and (10)) is an mX1 

matrix. The q matrix is an array of ones, as in equation (19). For simplicity, during the 

design phase, each element of the q matrix is kept as constants of 1s.   

   P-, = K v ywyw ywy� … ywy-y�yw y�y� … y�y-⋮ ⋮ ⋱ ⋮y-yw y-y� … y-y-
z    (18)  

   q-,� = �1, 1, … , 1�. T       (19) 
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Constraint parameters:  In equations (9) and (10), the objective function is 

subjected to the box constraint (which comprises G and h parameters), and the equality 

constraint (which consists of A and b const). In this case, α parameter is a 1Xm matrix in 

equation (10), which is same as the output label y in equation (9). As shown in equation 

(10), b const parameter in equation (9) is set to zero. Also, bconst parameter in equation 

(10) is set to zero in equation (9). In addition, G parameter in equation (10) is a constant 

value of 1. The maximum threshold of the box constraint is h parameter in equation (10) 

(i.e., C parameter in equation (9)). C is considered as the penalty parameter, which is a 

user-defined vector provided during the parameter specifications. The value of C impacts 

the overall speed-performance of the CO-based SVM algorithm. This impact is illustrated 

in Section 3.4.   

Other parameters:  α parameter in equation (9), which corresponds to x in 

equation (10), is crucial to identify the support vectors in the CO-based SVM algorithm. 

Since the coordinate dimensions of the support vectors determine the orientation of the 

hyper-plane, α values for all the input samples are initialized to zeros, prior to performing 

the convex optimization. The goal of performing the convex optimization is to compute 

the minimum value for α for each input sample. Based on the aforementioned threshold 

value (C), the input samples with α value greater than threshold value, will be considered 

as the support vectors. Furthermore, as discussed above, since the size of the P matrix 

increases exponentially with the increasing number of input samples, two working sets 

(or input samples) are selected and utilized to compute α in all the iterations. In this case, 

for the initial starting point, a feasible set of (0, 0) is selected, which is the first input 

samples of the dataset; and the Grad (gradient) value is initialized to zero. The slope of 
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the gradient to the minimum value typically corresponds to the gradient descent direction; 

hence, the gradient value is utilized to select the next working set.  

3.4.2.2.2 Convex Optimization Phase  

After the parameter initialization phase, the convex optimization phase is 

performed. During the convex optimization phase, five operations illustrated in steps (d) 

to (h) (in Figure 3.4) are performed. The datapath for the convex optimization is shown in 

Figure 3.7, which consists of several adders, multipliers, subtractions, MAC modules, 

dividers, accumulator registers, comparators, and multiplexers. The convex optimization 

process (as in equation 9) involves finding the minimum α value. In this case, α value is 

computed using the Add1 to Add4, Mul1, Div1, and M0 (multiplexer) modules, as 

illustrated in fig 3.7. In order to find the minimum α value, additional comparators, 

multiplexers, and reconstruct gradient modules are utilized.      

 

Figure 3.7: Datapath for Convex Optimization 

Initially, during the first iteration to find the minimum α value, the two input 

samples, Pset1 and Pset2 (stored in the BRAM) are accessed using the two separate address 

generators, simultaneously. Next, the result of the addition operation (with Add1 in 

Figure 3.7) of Pset1 and Pset2 are added (using Add2) to the result of the multiplier (i.e., 

Mul1), which corresponds to the step (f) in Figure 3.4. Then, the gradient value is divided 
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(with Div1) by the result of the second addition operation (with Add2). Since the Grad 

(gradient) value is initialized to zero, the initial result of the division is also zero. In our 

design, the computation of the gradient parameter is modified using the reconstruct 

gradient module in Figure 3.7. The internal architecture of the reconstruct gradient 

module is demonstrated in Figure 3.8. During the first iteration, the value of α is zero. 

The output (or result) of the division operation (with Div1 in Figure 3.7) is considered as 

the offset value, which in turn is used to update α value. Apart from the first iteration, 

where the initial α value is zero, from the second iteration onwards, the aforementioned 

offset value, is added to α value, computed in the former iteration. For instance, the offset 

value produced from the second iteration is added to α value generated from the first 

iteration, and so on. In this case, two addition operations are performed in parallel (using 

Add3 and Add4), in order to generate new α values for each working set. The new α 

values are stored in the temporary register (i.e., reg in Figure 3.7), to be used for the 

future iterations. Next, two subtraction operations are performed in parallel (using Sub1 

and Sub2), to find the difference between the new α value and former α value, which 

provides the deviation between the successive iterations. Then, the new α values are 

multiplied in parallel (using Mul2 and Mul3), with Pset1 and Pset2, to find the gradient value 

(Grad). These Grad values are stored in the on-chip BRAM for subsequent iterations and 

operations. The aforementioned operations are illustrated in steps (d), (e), (f), and (g) in 

Figure 3.4.   

Finding the minimum value, for the objective function in equation (9), is an 

iterative process. This process continues until it reaches the maximum number of 

iterations, typically defined by the user. Once the maximum iteration is reached, the α 
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values are compared with the user-defined threshold value (C) of 10-3 using the Comp 

module. In this case, the α values that are greater than the threshold value are considered 

as the support vectors, and the α values that are less than threshold values are discarded. 

These support vectors are important to determine the orientation of the hyper-plane. After 

obtaining the optimal solution for α (i.e., the minimum α value from equation (9)), this 

optimal α value is forwarded via the multiplexer (M3) to a multiplier (Mul5) followed by 

a MAC module (MAC2) to compute the weight vectors (w) in equation (7). These weight 

vectors and the α values are stored in the BRAM as well as in the DDR3-SDRAM for 

subsequent testing stage.  

 

Figure 3.8: Internal Architecture of Reconstruct Gradient Computation 

The internal architecture (or the datapath) of the reconstruct gradient computation 

is demonstrated in Figure 3.8. In case, if the optimization does not converge to a 

minimum α value during the iterative process of convex optimization (i.e., steps (d) to (h) 

in Stage 2, Figure 3.4), we utilize the reconstruct gradient module (in Figure 3.7) to 

adjust (or update) the value of the gradient parameter (Grad), and repeat the convex 

optimization process. Adjusting the values of the gradient parameter depends on the α 

values. As illustrated in Figure 3.8, the comparator module checks whether the gradient 

descent direction, of the current working set, is positive or negative. In this case, for the 

Pset1, if the gradient descent direction is positive, then the remaining Pset1 values (from t 



 
 

66 
 

to m) are assigned from the current number of active sets to the remaining number of data 

samples; and if the gradient descent direction is negative, then the working set is reset to 

select from the initial set (from 0 to t) as shown in step (h) in Figure 3.4. Next, the 

resulting Pset1 is selected via a multiplexer (M2), which is multiplied (with Mu13) with 

the α value. Then the addition operation is performed (using Add3) on the results from 

Add2 and the results from Mu13, in order to obtain the restructured Grad value. This 

updated Grad value is stored in the BRAM for subsequent iterations and analysis, i.e., the 

“Grad” signal as shown in Figure 3.7.  

3.4.2.2.3 Bias Value Computation Phase  

The last phase of Stage 2 is the bias value computation phase. The bias value b in 

equation (2) is also known as the offset value [15], represents the intercept of the hyper-

plane with respect to the origin. The bias value is computed with the following equation 

(20) [27]:   

b = − �� | max}�|AM2o�~P∑ α�y�K�x�, x5�-52� R + min}�|AM2��~P∑ α�y�K�x�, x5�-52� R�  (20) 

   _ = P∑ ������ o ∑ ���������,������� R������ �� ������� �������,���         (21) 

Equation (20) is modified to include the sum of all the support vectors and then 

divided by the total number of support vectors to obtain the mean value as in equation 

(21) [132]. As illustrated, equation (21) provides the average values for all the support 

vectors, whereas equation (20) identifies the max and min value for each class support 

vectors. The internal architecture (or datapath) of the bias value computation is 

demonstrated in Figure 3.9, which comprises a MAC module, adder, multiplier, 

subtractor, divider, and an accumulator register with a feedback loop to the adder. As 
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shown in Figure 3.9, the results (elements) of the kernel matrix (K (xi, xj) obtained from 

Stage 1) is multiplied with the α value (obtained from Stage 2). The result of the Mul 

module is multiplied with the y sv value (which is the output label in equation (1) 

corresponding to the support vector) and summed using the MAC module. The datapath 

of Mul and MAC corresponds to the second summation term in the equation (21). The 

output label of the support vector (y sv) is passed through the Add module and 

accumulator register (as in Figure 3.9), to obtain the first summation term in equation 

(21). Finally, the result of the MAC is subtracted from the result of the accumulator 

register, in order to obtain the numerator in equation (21). Finally, the result of the 

subtractor is divided by the total number of support vectors (nsv) to obtain the bias value. 

The final bias vale b is stored in the on-chip BRAM as well as in the DDR3-SDRAM for 

subsequent analysis. 

 

Figure 3.9: Internal Architecture of Bias Value Computation 

3.4.2.3 Stage 3: Testing  

Our stage 3, which is our final stage, is the testing process. Typically for 

classification, the input dataset is divided into two samples: training and testing. During 

Stages 1 and 2, training is performed using the training set, whereas during Stage 3, 
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the function f(x) in equation (3). In this case, if the output of the equation (3) is less than 

zero (f(x) < 0), then the test vectors are assigned to -1 class; and if the output of the 

equation (3) is greater than zero (f(x) > 0), and then the test vectors are assigned to +1 

class. We utilize the following formula (derived from [27]), which is known as the 

decision function (equation (22)), to design and develop our testing (or classification) 

stage of the CO-based SVM algorithm.   

   ∅���� =  Vkd�∑ c
�
O��
, ����
2� +  _�    (22) 

Figure 3.10: Datapath of Testing Process 

The datapath of the testing process, which performs the final SVM classification, 

is illustrated in Figure 3.10. As mentioned before, this datapath is designed and 

developed based on the equation (22). In this stage, as in equation (22), it is necessary to 

perform the sign verification for the testing (classification) process. As depicted in Figure 

3.10, the datapath for the testing (classification) comprises a multiplier, a MAC module, 

an adder, a comparator and a multiplexer. Initially, the test vectors (from the testing 

sample) are pre-fetched to the BRAM from the DDR3-SDRAM and forwarded to the 

kernel block in a pipelined fashion. As detailed in Stage 1 (Section 3.3), the Kernel 

module maps these test vectors to the feature space. The two aforementioned steps (i.e., 

pre-fetching the test vectors, and mapping them to the feature space) are done in stage 1. 

In Stage 3 of our design, we reuse the pre-fetch and kernel modules from Stage 1 to 

reduce the total area occupied by our hardware design. The resource utilization is detailed 

in Section 3.4.   
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In stage 3, as shown in Figure 3.10, the result of the kernel computation, which is 

the kernel matrix, is initially multiplied by the α value (obtained from Stage 2) using the 

Mul module. Then the result of the Mul module is forwarded to the MAC module to 

multiply with the output label of the support vector (ysv), and then perform the 

summation operation corresponding to equation (22). The α value and the support vector 

parameters (ysv) are computed during the convex optimization process, as detailed in 

Section 3.3. Next, the bias value (b) (obtained in Stage 2 (in equations (2) and (21)) is 

added (using the Add module) to the final summation result of the MAC module. Then 

the result of the adder is forwarded to the comparator to determine whether the adder 

result is greater than or equal to zero. Based on the results of the comparator, the test data 

samples are assigned into +1 class or -1 class, via the multiplexer.  

3.5 EXPERIMENTAL RESULTS AND ANALYSIS  

We perform experiments to evaluate the feasibility and efficiency of our proposed 

embedded designs, for convex optimization (CO) based SVM algorithm, in terms of the 

speed-performance (speedup), accuracy, as well as the scalability to handle different 

datasets with varying sizes. We measure the classification accuracy [132] and the speed-

performance utilizing the following equations (23) and (24), respectively. The scalability 

metric is to demonstrate our embedded designs’ capability to handle different datasets 

with varying data sizes, and varying number of attributes and other varying parameters 

that are commonly found in many datasets of machine learning applications.  

 Accuracy (in %), (�
, ��) = ��� ∑ 1��o�
2w  ��
 == ��� ∗ 100   (23) 

   Speedup  =  
Software execution time

Hardware execution time
         (24) 
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During the initial design phase, we compare our results with the results from an 

open-source python code [132], in order to verify the correctness and the functionality of 

our proposed embedded designs. The execution time for the embedded designs are 

obtained in clock cycles and converted to seconds. Our proposed embedded architectures 

(both the hardware and software) are executed on Virtex-6 FPGA running at 100MHz, 

whereas the python code is executed on the desktop computer, with Intel-i7 processor, 

running at 2.3GHz.   

In this research work, the experiments are carried out to evaluate our embedded 

designs on two different benchmark datasets: Ionosphere dataset [122] and Wisconsin 

breast cancer diagnostic dataset [21] for machine learning applications. These datasets are 

stored in the DDR3-SDRAM and formatted accordingly to distinguish between the input 

features and the output labels. The data size is measured by considering the number of 

input vectors/samples (n) and the number of dimensions/features (m) in each vector. For 

our experiments, data sizes are varied to examine its impact on the accuracy, speedup, 

and scalability.   

For all our experiments, we partition the datasets into two sets: training and 

testing. The test set is considered as a percentage of the dataset to investigate the 

classification accuracy. In this case, the training set is varied from 10% to 90%, with an 

increment of 10%.   

Apart from varying the data sizes for the testing and training, the number of 

iterations (to find the minima) is also varied for the training process, in order to examine 

the ability and the speedup of the convex optimization process to find these minima 

values.  
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3.5.1 Analysis on Resource Utilization  

In order to examine the feasibility and area-efficiency of our embedded hardware 

architectures, cost analysis on space (resource utilization) is carried out. In this case, after 

the implementation process, we obtain the significant resource utilization parameters, 

including the number of occupied slices, number of BRAMs, and number of DSP48E1 

slices, whereas the number of occupied slices typically consist of the slice registers and 

slice LUTs. These resource utilization statistics for our proposed embedded hardware 

design is presented in Table 1. As illustrated, for our embedded hardware design, the total 

number of occupied slices, number of DSP48E1, and number of BRAMs are 5216, 110, 

and 118 respectively. Considering the total number of logic slices (37680 slices) in 

Virtex-6 FPGA, our hardware design occupies only 12.7% of the chip area.     

Table 1. Resource Utilization for Embedded Hardware. 

Description Occupied area on chip 

Number of occupied slices 5216 

Number of BRAM 36E1  118 

Number of DSP48E1  110 

Number of slice registers 12784 

Number of slice LUTs 12965 

During our initial design phase, we explore the feasibility and tradeoff of utilizing 

the registers versus BRAMs to store the intermediate results. From this investigation, it is 

observed that utilization of BRAMs leads to substantial reduction of the total number of 

occupied slices on the chip compared that of the registers. Furthermore, BRAMs are 

imperative to hold the intermediate minima values during the sequential minimal 

optimization (SMO) process. For certain operations, we utilize the DSP48E1 slices for 

single-precision floating-point computations [135]. This design decision also leads to 
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more area-efficient and lower clock latency for the floating-point operations compared to 

ones using the pure logic-based options [136].   

Table 2. Execution Time, Speedup, Accuracy for Cancer Benchmark Dataset for Linear 

Kernel, with C=1, d=2, γ =0.0001. 

Data 

size 

Training 

set (%) 

No. of 

vectors 

Micro-Blaze 

execution time 

(clock cycles) 

Hardware 

execution time 

(clock cycles) 

Speedup 
Accuracy 

(%) 

1707 10 57 161890000 6933463 23.35 83.43 

3414 20 114 328230000 13357865 24.57 92.32 

5121 30 171 655110000 24470082 26.77 90.47 

6828 40 228 1342490000 32207844 41.68 91.52 

8535 50 285 2112080000 35770689 59.04 92.28 

10242 60 342 3109080000 43691507 71.16 91.66 

11949 70 399 4294380000 61637143 69.67 92.39 

13656 80 456 5773890000 84519878 68.31 91.22 

15363 90 513 7551280000 101299406 74.54 92.98 

Table 3. Execution Time, Speedup, Accuracy for Cancer Benchmark Dataset for 

Polynomial Kernel, with C=1, d=2, γ =0.0001. 

Data 

size 

Training 

set (%) 

No. of 

vectors 

Micro-Blaze 

execution time 

(clock cycles) 

Hardware 

execution time 

(clock cycles) 

Speedup 
Accuracy 

(%) 

1707 10 57 359265478 122811272 2.93 81.09 

3414 20 114 1698749510 134533462 12.63 86.18 

5121 30 171 4548668857 155902214 29.18 93.48 

6828 40 228 7772314965 184562787 42.11 88.88 

8535 50 285 12353625978 222771368 55.45 86.31 

10242 60 342 19230324150 268144802 71.72 93.42 

11949 70 399 19744400000 323179673 61.09 92.98 

13656 80 456 25290974839 385245965 65.65 92.98 

15363 90 513 27795974670 460237826 60.39 96.49 

Utilizing the on-chip BRAMs (and in few cases, using the registers) to hold the 

intermediate results, substantially reduces the execution time for numerous matrix 

computations inherent in the CO-based SVM algorithm, thus enhancing the overall 

speed-performance of this algorithm as illustrated in Section 5.4.   
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The pre-fetching techniques introduced to reduce the memory access latency and 

the on-chip BRAM to hold the data/results, indeed add more space (i.e., extra resources) 

to the overall design of the CO-based SVM algorithm. Thus, it is important to consider 

the speed-space tradeoffs, when designing certain algorithms/techniques, such as CO-

based SVM, for machine learning applications, which typically require processing large 

volume of data, especially on embedded platforms with their stringent area constraints.   

3.5.2 Analysis on Classification Accuracy  

We perform experiments to evaluate the classification accuracy of our proposed 

embedded designs for the CO-based SVM algorithm. In this case, the classification 

accuracy for the CO-based SVM algorithm is obtained with the varying data sizes for the 

maximum number of iteration of 1000. The classification accuracy is measured using 

equation (23).   

In order to measure the classification accuracy, we partition the datasets into two 

sets: training and testing. The training set is varied from 10% to 90%, with an increment 

of 10% to investigate the classification accuracy. Furthermore, for the linear, polynomial, 

and Gaussian radial basis function (RBF) in Stage 1, we investigate and select the 

following specifications: penalty parameter (C) to 1; degree of polynomial (d) to 2, with 

coefficient of 1; and γ to 0.0001.   

The aforementioned parameters are varied to find a good fit for constructing the 

hyper-plane. Varying these parameters can potentially lead to under-fitting and over-

fitting problems [132]. The under-fitting occurs when the SVM generalizes the main 

features of the data; whereas the over-fitting occurs when the SVM learns that it is 

sensitive to the noise [27], [132]. As a result, for our experiments, we partition the 
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datasets and utilize the cross-validation method [27] to select suitable constants. The 

cross-validation methods enable us to train the SVM by partitioning the dataset, and also 

enable us to adjust the aforementioned parameters to obtain the best accuracy results. In 

this case, in order to avoid the under-fitting and over-fitting issues, the SVM is trained 

the tested with different parameters (C, degree, gamma, number of iterations) to construct 

a better data classifier.   

Table 4. Execution Time, Speedup, Accuracy for Cancer Benchmark Dataset for 

Gaussian RBF Kernel, with C=1, d=2, γ =0.0001. 

Data 

size 

Training 

set (%) 

No. of 

vectors 

Micro-Blaze 

execution time 

(clock cycles) 

Hardware 

execution time 

(clock cycles) 

Speedup 
Accuracy 

(%) 

1707 10 57 622351344 46237098 13.46 73.54 

3414 20 114 1699669752 94583736 17.97 88.79 

5121 30 171 2762669586 110772637 24.94 89.61 

6828 40 228 4754029339 128835483 36.9 92.72 

8535 50 285 7267484089 148984913 48.78 92.66 

10242 60 342 10895192675 224134801 48.61 92.48 

11949 70 399 15652953272 337420850 46.39 91.14 

13656 80 456 22175875454 385131564 57.58 90.81 

15363 90 513 25205111592 463926221 54.33 90.27 

Table 5. Execution Time, Speedup, Accuracy for Ionosphere Benchmark Dataset for 

Linear Kernel, with C=1, d=2, γ =0.0001. 

Data 

size 

Training 

set (%) 

No. of 

vectors 

Micro-Blaze 

execution time 

(clock cycles) 

Hardware 

execution time 

(clock cycles) 

Speedup 
Accuracy 

(%) 

1194 10 36 339293000 10589052 32.04 65.94 

2387 20 71 1002549999 30265650 33.12 67.53 

3581 30 106 2088900000 52608548 39.7 69.78 

4774 40 141 3566149999 86932128 41.02 61.66 

5967 50 176 5243630000 102803892 51 77.26 

7161 60 211 7641730000 134483893 56.82 75.6 

8354 70 246 10094000000 162238668 62.21 96.71 

9547 80 281 13728500000 218501180 62.83 95.12 

10741 90 316 19554900000 311316697 62.81 100 
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The classification accuracy results for the overall CO-based SVM algorithm using 

Cancer and Ionosphere benchmark datasets are presented in Tables 2-4 and 5-7, 

respectively. Three sets of accuracy results (in percentage) are obtained separately, when 

using three different mathematical kernels for Stage 1, i.e., linear (in Tables 2 and 5), 

polynomial (in Tables 3 and 6, and Gaussian RBF (in Tables 4 and 7). The accuracy 

results are presented in column 7 of these tables.   

Table 6. Execution Time, Speedup, Accuracy for Ionosphere Benchmark Dataset for 

Polynomial Kernel, with C=1, d=2, γ =0.0001. 

Data 

size 

Training 

set (%) 

No. of 

vectors 

Micro-Blaze 

execution time 

(clock cycles) 

Hardware 

execution time 

(clock cycles) 

Speedup 
Accuracy 

(%) 

1194 10 36 454131374 127739374 3.55 65.82 

2387 20 71 1109957922 124685905 8.9 67.96 

3581 30 106 2412208381 132320757 18.23 69.16 

4774 40 141 4156918296 147575466 28.16 61.47 

5967 50 176 6088204069 163878344 37.15 77.65 

7161 60 211 8680224863 182982124 47.43 75.68 

8354 70 246 11520789306 206488474 55.79 96.2 

9547 80 281 15680125496 239989386 65.33 100 

10741 90 316 20949687217 264792097 79.11 100 

Table 7. Execution Time, Speedup, Accuracy for Ionosphere Benchmark Dataset for 

Gaussian RBF Kernel, with C=1, d=2, γ =0.0001. 

Data 

size 

Training 

set (%) 

No. of 

vectors 

Micro-Blaze 

execution time 

(clock cycles) 

Hardware 

execution time 

(clock cycles) 

Speedup 
Accuracy 

(%) 

1194 10 36 131588528 17246202 7.63 60.32 

2387 20 71 443339285 33586309 13.2 62.2 

3581 30 106 1369622549 62597008 21.88 71.54 

4774 40 141 2732821550 102237992 26.73 74.53 

5967 50 176 3938128950 136693125 28.81 77.67 

7161 60 211 8127266954 241523535 33.65 68.18 

8354 70 246 7150427148 191957775 37.25 94.33 

9547 80 281 20918761361 528652043 39.57 97.59 

10741 90 316 29338152919 718544034 40.83 97.79 
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From Tables 2 to 7, it is observed that the classification accuracy varies with the 

different datasets as well as with varying percentage of training sets. At a glance, the 

classification accuracy seems to increase with the increasing percentage of training set for 

both the datasets. For instance, classification accuracy increases: from 83%-93% (in 

Table 2) and from 66%-100% (in Table 5) with the linear kernel; from 81%-96% (in 

Table 3) and 66%-100% (in Table 6) with the polynomial kernel; and 74%-90% (in Table 

4) and 60%-98% (in Table 7) with the Gaussian RBF kernel. From Tables 5 to 7, the 

Ionosphere datasets has 100% classification accuracy, when the percentage of training set 

is 90% of the dataset with linear and polynomial kernels. From Table 2 to 4, the Cancer 

benchmark dataset achieves the best classification accuracy of 96% with the polynomial 

kernel, when the percentage of training set is 90% of the dataset. It should be noted that 

the classification accuracy results are the same for our embedded hardware design as well 

as for our embedded software design.   

Apart from our embedded hardware and software designs, the classification 

accuracy experiments are also performed on the python code running on the desktop 

computer. The accuracy results when using the linear, polynomial, and Gaussian RBF 

mathematical kernels are presented in Figures 3.11 and 3.12 for the Cancer and 

Ionosphere benchmark datasets (with the maximum number of iteration of 1000), 

respectively. The accuracy results of our designs when using the linear, polynomial, and 

Gaussian RBF mathematical kernels (from Tables 2 to 7) are also presented in Figures 

3.11 and 3.12 for the Cancer and Ionosphere benchmark datasets, respectively.   
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Figure 3.11: Graph of Classification Accuracy vs. Data Size for Cancer Benchmark 

Dataset 

 

Figure 3.12: Graph of Classification Accuracy vs. Data Size for Ionosphere Benchmark 

Dataset 
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From these results, it is evident that classification accuracy varies with different 

datasets, with varying data sizes, as well as with different classification techniques. As 

detailed in Chapter 2, selecting a suitable classifier for a specific dataset is not a trivial 

task. By employing the cross-validation method, we can vary and select the most 

appropriate parameters that can indeed facilitate this task, which in turn will lead to better 

classification results.   

 

Figure 3.13: Graph of Classification Accuracy vs. Number of Iterations for Cancer 

Benchmark Dataset 
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Figure 3.14: Graph of Classification Accuracy vs. Number of Iterations for Ionosphere 

Benchmark Dataset 

3.5.2.1 Analysis of Classification Accuracy with Varying Number of Iterations  

The aforementioned classification accuracy results are obtained with varying data 

sizes and with constant number of iterations. We perform additional experiments to 

analyze the classification accuracy results with varying number of iterations and with 

constant data size. In this case, we select the training set data size of 50% for both the 

Ionosphere and Cancer datasets. In this case, we vary the maximum number of iterations 

from 100 to 2500 with an increment of 500, to find the minima value. The classification 

accuracy results of our designs when using the linear, polynomial, and RBF mathematical 

kernels are shown in Figures  3.13 and 3.14, for the Cancer and Ionosphere benchmark 

datasets, respectively.   
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Table 8. Accuracy vs. Number of iterations – Cancer Dataset 

# of iterations 

Accuracy - Embedded Design 

Lin - 

Embedded 

design  

Poly - 

Embedded 

design  

RBF - 

Embedded 

design  

100 81.57 79.82 89.74 

500 89.47 79.82 89.74 

1000 91.22 79.82 89.74 

1500 91.22 79.82 89.74 

2000 91.22 79.82 89.74 

2500 92.98 49.12 89.74 

Note: C = 1, degree (d) = 2, gamma (γ) = 0.0001, Data size = 50% 

Table 9. Accuracy vs. Number of iterations – Ionosphere Dataset 

# of iterations 

Accuracy - Embedded Design 

Lin - 

Embedded 

design  

Poly - 

Embedded 

design  

RBF - 

Embedded 

design  

100 81.57 79.82 89.74 

500 89.47 79.82 89.74 

1000 91.22 79.82 89.74 

1500 91.22 79.82 89.74 

2000 91.22 79.82 89.74 

2500 92.98 49.12 89.74 

Note: C = 1, degree (d) = 2, gamma (γ) = 0.0001, Data size = 50% 

For the Ionosphere datasets, it is observed that the convex optimization process 

converges to the minima with less number of iterations, for instance in 100 iterations in 

some cases. As a result, the impact of number of iterations on accuracy is insignificant, as 

shown in Figure 3.14.  
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3.5.3 Analysis on Execution Time  

As detailed in Section 3.2, in order to evaluate the speed-performance of our 

embedded hardware designs, we design and implement the embedded software for the 

CO-based SVM algorithm. The software design is executed on the Micro-Blaze soft 

processor on the same ML605 development platform. The execution times for both the 

embedded hardware and software designs are obtained using the AXI Timer running at 

100MHz on the ML605 board. These execution times are measured in real-time, while 

our designs are actually running on the chip. In this case, we design the AXI Timer in 

cascade mode to measure the accurate execution time for all three stages of the CO-based 

SVM algorithm. This is mainly because in certain scenarios, especially for large datasets, 

the execution time exceeds the allowable timer counter value of the AXI Timer. In order 

to resolve the counter overflow issue, the AXI timer is designed utilizing two timers in 

cascade mode.   

The execution times for both our embedded hardware and software designs are 

obtained with the varying data sizes for the maximum number of iterations of 1000. The 

execution times for the overall CO-based SVM algorithm using the Cancer and 

Ionosphere benchmark datasets are presented in Tables 2-4 and 5-7, respectively. Similar 

to the classification accuracy results, three sets of execution times for embedded software 

and embedded hardware designs are obtained separately, when using three different 

mathematical kernels for Stage 1, i.e., linear (in Tables 2 and 5), polynomial (in Tables 3  

and 6), and RBF (in Tables 4 and 7). The execution time for each set (for both the 

embedded hardware and software) is measured 10 times and the average is presented in 

columns 4 and 5 of these tables, respectively.   
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Figure 3.15: Embedded Software for CO-Based SVM: Execution Times vs. Data Size for 

Cancer Benchmark Dataset 

 

The execution times for the embedded hardware and software designs for the CO-

based SVM algorithm using the linear, polynomial, and Gaussian RBF kernels are 

illustrated in Figure 3.15 and 3.16, respectively, for the Cancer benchmark datasets. As 

illustrated, the execution times increase almost exponentially with the increasing data 

sizes, for both the embedded hardware and software designs. Somewhat similar results 

are obtained when using the Ionosphere dataset. The CO-based SVM with linear kernel 

takes less execution time compared to that of the polynomial kernel. As illustrated in 

Figure 3.15 and 3.16, the execution times are the highest for CO-based SVM with the 

polynomial kernels, whereas the execution times are the lowest for CO-based SVM with 

the linear kernels for the Cancer dataset.     
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Figure 3.15.1: Embedded Software for CO-Based SVM: Execution Times vs. Data Size for 

Ionosphere Benchmark Dataset. 

 

Figure 3.16: Embedded Hardware for CO-Based SVM: Execution Times vs. Data Size 

for Cancer Benchmark Dataset 
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Figure 3.16.1: Embedded Hardware for CO-Based SVM: Execution Times vs. Data Size for 

Ionosphere Benchmark Dataset.  

Table 10. Hardware execution time vs. Number of iterations – Cancer Dataset 

Max. iterations Linear Polynomial RBF 

500 47881098 57628552 88430257 

1000 35770689 52771368 148984913 

1500 80857778 102599012 152423593 

2000 128725569 126131230 162257694 

2500 150962104 148160823 175812280 

3000 143920135 193942670 178098186 

Note: C = 1, degree (d) = 2, gamma (γ) = 0.0001, Data size = 50% 

3.5.3.1 Analysis of Execution Times with Varying Number of Iterations  

The aforementioned execution times are obtained with varying data sizes and with 

constant number of iterations. Similar to accuracy analysis, we perform additional 
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experiments to analyze the execution times with varying number of iterations and with 

constant data size. In this case, we vary the maximum number of iterations from 500 to 

3000 with an increment of 500, to find the minima value as shown in Table 10 and 11.  

Table 11. Hardware execution time vs. Number of iterations – Ionosphere Dataset 

Max. iterations Linear Polynomial RBF 

500 111498241 75833237 136693567 

1000 102803892 163878344 136693125 

1500 204012481 214907978 136693183 

2000 278499821 298532129 136692360 

2500 278858795 312702454 136693468 

3000 304813706 362067934 136693340 

Note: C = 1, degree (d) = 2, gamma (γ) = 0.0001, Data size = 50% 

The execution times for both the embedded hardware and software are also 

obtained with the varying number of iterations for both the benchmark datasets with the 

training set data size of 50%. The embedded hardware execution times for Cancer and 

Ionosphere datasets are presented in Figures 3.17 and 3.18, respectively. Visually, as 

shown in Figure 3.17, for our embedded hardware designs, the execution times increase 

almost linearly with the increasing number of iterations, for all three kernels, for the 

Cancer benchmark datasets. For the Ionosphere benchmark dataset, as depicted in Figure 

3.18, the embedded hardware execution times increase almost linearly with the increasing 

number of iterations, for the linear and polynomial kernels; whereas for the RBF kernel, 

the embedded hardware execution times remain the same with the increasing number of 

iterations.  

For our designs, we utilize the maximum number of iteration (in our case, 1000 

iterations) as our threshold point to find the minima value, instead of implementing a 
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specific stopping criterion. Hence, our convex optimization solver has to reach the 

maximum number of iterations, in order to complete the execution of the CO-based SVM 

algorithm. Conversely, a stopping criterion terminates the execution of the CO-based 

SVM algorithm, when the objective function converges to the minima value, which may 

or may not reduce (or increase) the total execution time.   

 

 

Figure 3.17: Embedded Hardware for CO-Based SVM: Execution Times vs. Number of 

Iterations for Cancer Benchmark Dataset 

3.5.4 Analysis on Speedup  

The performance-gain (or speedup), resulting from the embedded hardware 

design over embedded software running on Micro-Blaze, for the CO-based SVM 

algorithm using three different mathematical kernels, is presented in column 6 in Tables 

2-7. The speedup is measured using equation (24). Figures 3.19 and 3.20 demonstrate the 
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speedup versus the data sizes (percentage of training set) for our embedded hardware 

design for the CO-based SVM with the linear, polynomial, and Gaussian RBF kernels for 

the Cancer and Ionosphere benchmark datasets, respectively. At a glance, as shown in 

Figures 3.19 and 3.20, the speedup typically increases as the percentage of training set 

increases for both the datasets. Also, Table 12 and 13 illustrates the speedup different 

computing platforms with respect to hardware design. In Table 12 and 13, the execution 

time is measured in seconds the speedup is computed by dividing the chosen platform 

execution time over respective platform. The result is the speedup comparison among 

different available computing platforms. 

 

Figure 3.18: Embedded Hardware for CO-Based SVM: Execution Times vs. Number of 

Iterations for Ionosphere Benchmark Dataset 
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Table 12. Speedup Comparison – Cancer Dataset 

Platform 
Execution Time (s) Speedup over SW Speedup over python 

Lin Poly RBF Linear Poly RBF Lin Poly RBF 

SW-100MHz 75.51 277.96 252.05 - - - 0.04 0.01 0.004 

Python-2.3GHz 3.16 3.0319 1.0156 23.84 91.67 248.17 - - - 

HW-100MHz 1.01 4.6023 4.6392 74.54 60.39 54.3307 3.12 0.65 0.21 

Note: C = 1, degree (d) = 2, gamma (γ) = 0.0001, maximum number of iterations = 1000 

Table 13. Speedup Comparison – Ionosphere dataset 

Platform 

Execution Time (s) Speedup over SW Speedup over python 

Lin Poly RBF Lin Poly RBF Lin Poly RBF 

SW-100MHz 195.54 209.49 293.38 - - - 0.01 0.43 0.001 

Python-2.3GHz 3.76 92.02 0.46 51.93 2.27 626.88 - - - 

HW-100MHz 3.11 2.64 7.18 62.81 79.11 40.83 1.20 34.75 0.06 

Note: C = 1, degree (d) = 2, gamma (γ) = 0.0001, maximum number of iterations = 1000 

For the Ionosphere benchmark dataset, as in Figure  3.20, for the one with 

polynomial kernel, the speedup increases linearly when the percentage of training set 

increases from 10% to 100%; for the one with linear kernel,  the speedup increases 

almost linearly when the percentage of training set increases from 10% to 80%, and the 

speedup remains the same when the percentage of training set increases from 80% to 

100%; for the one with RBF kernel also the speedup increases almost linearly when the 

percentage of training set increases from 10% to 100%.  

For the Cancer and Ionosphere benchmark dataset, as in Figure 3.19 and 3.20, for 

the one with polynomial kernel, the speedup increases linearly when the percentage of 

training set increases from 10% to 70%, and the speedup drops slightly when the 

percentage of training set increases from 70% to 100%; for the one with linear kernel, the 
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speedup increases linearly when the percentage of training set increases from 10% to 70 

and from 90% to 100; for the one with RBF, the speedup increases linearly when the 

percentage of training set increases from 10% to 60% and from 80% to 90% and the 

speedup drops slightly when the when the percentage of training set increases from 60% 

to 80% and from 90% to 100%.   

 

Figure 3.19: Embedded Hardware for CO-Based SVM: Speedup vs. Data Size for Cancer 

Benchmark Dataset 

To provide a comparison with the available source, Table 14 ad 15 provides the 

accuracy results with the similar test data size. It is evident from Table 4-7 and Table 14-

15 that for the same test environment, the results are similar. We can further evaluate 

with more complex patterns to illustrate the effects of SVM parameters, size of data sets 

etc for further analysis. 
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Figure 3.20: Embedded Hardware for CO-Based SVM: Speedup vs. Data Size for 

Ionosphere Benchmark Dataset 

Table 14. Python code - Accuracy for Cancer Benchmark Dataset 

Data size 

Training set 

(%) 

# 

vectors 

Accuracy (%) 

Lin - 

Python 

Design  

Poly - 

Python 

Design  

RBF - 

Python 

Design  

1707 10 57 82.58 87.08 68.1 

414 20 114 70.48 94.93 87 

5121 30 171 95.46 66.75 92.44 

6828 40 228 75.88 91.17 92.94 

8535 50 285 81.62 55.83 91.87 

10242 60 342 82.74 96.46 93.36 

11949 70 399 96.44 95.26 93.49 

13656 80 456 25 61.6 93.75 

15363 90 513 10.9 16.36 96.36 

Note: C = 1, degree (d) = 2, gamma (γ) = 0.0001, Maximum number of iterations = 1000 

 

0

10

20

30

40

50

60

70

80

90

1194 2387 3581 4774 5967 7161 8354 9547 10741

S
p

e
e
d

u
p

Data size

Speedup vs. Data size

Lin

Poly

RBF



 
 

91 
 

Table 15. Python code - Accuracy for Ionosphere Benchmark Dataset 

Data size 

Training set 

(%) 

# 

vectors 

Accuracy (%) 

Lin - 

Python 

Design  

Poly - 

Python 

Design  

RBF - 

Python 

Design  

1194 10 36 82.8 69.74 66.56 

2387 20 71 81.36 73.47 67.74 

3581 30 106 82.37 68.85 70.08 

4774 40 141 84.68 80.86 73.2 

5967 50 176 86.2 91.37 78.16 

7161 60 211 94.24 90.64 68.34 

8354 70 246 99.03 95.19 95.19 

9547 80 281 94.2 97.1 97.1 

10741 90 316 91.17 97.05 97.05 

Note: C = 1, degree (d) = 2, gamma (γ) = 0.0001, Maximum number of iterations = 1000 

As mentioned earlier, additional software experiments are performed on a desktop 

computer; thus, we also compare our embedded hardware designs running at 100MHz on 

Virtex-6 FPGA with the baseline python software design on the Intel i7 processor 

running at 2.3GHz. In this case, our embedded hardware design achieves 3.1 times 

speedup compared to the python design for the Cancer dataset with the linear kernel; and 

our embedded hardware design achieves 34.8 times speedup compared to the python 

design for the Ionosphere dataset with the polynomial kernel.    

In summary: It is observed that for the CO-based SVM algorithm, as the number 

of samples (i.e., vectors) increases, the accuracy and total speedup also increase. In this 

case, when the CO-based SVM classifier has more samples to learn, it could lead to 

identifying complex patterns, and also generating a better separating hyper-plane. 

Furthermore, as the size of the matrices is increasing, as well as the complexity of the 
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computations/operations is increasing, customized and optimized designs might be the 

best avenue to accelerate and enhance various performance metrics of the CO-based 

SVM  algorithms, compared to the conventional computing platforms such as general-

purpose processors.  

3.5.5 Analysis on Existing Works on FPGA-Based Hardware Architectures for CO-

Based SVM 

We performed an extensive investigation on the existing works on FPGA-based 

hardware architectures for CO-based SVM algorithms in the published literature. Since 

we could not find any related work specifically for CO-based SVM, we extended our 

investigations to the existing works on FPGA-based hardware for general SVM. Our 

investigation revealed that there are many papers on FPGA-based hardware for SVM; 

however, we decided to select, discuss, and present some papers that are most recent 

and/or closely related to our proposed hardware architectures and techniques for creating 

CO-based SVM. Hence, it should be noted that this is not an exhaustive analysis on the 

existing works on FPGA-based hardware architectures for SVM. Detailed analysis of 

other existing works can be found in some survey papers such as [33], [34].  

FPGA-based parallel processing hardware architecture was proposed for SVM 

using stochastic gradient descent (SGD) as the training method, in [35]. The authors 

demonstrated the scalability of the SGD approach for SVM in terms of fixed-point vs. 

single-precision floating-point computations. The hardware design was generated using 

the Xilinx System Generator design tool, and executed on Xilinx ML605 board with 

Virtex-6 FPGA. In this case, the synthesis results were obtained and reported, in terms of 

area, time, and throughput; however, the classification accuracy results were not reported. 

From the results, it is evident that parallelization led to the increase in occupied area, thus 
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confirming that higher speedup due to parallelization, comes with the penalty of larger 

occupied area on chip. The proposed design could have demonstrated to execute datasets 

with more than 4 features/attributes, which is indeed a limitation when executing large 

volume of data with many attributes. Conversely, our proposed design can execute 

datasets with varying sizes and with any number of features/attributes. 

In [4], an energy-efficient embedded binarized SVM architecture was proposed 

and implemented on an FPGA. The computation kernels were designed in C/C++ and 

transformed into HDL using Xilinx HLS (high-level synthesis) tools. The proposed 

hardware design was executed on Xilinx Virtex-6/7 FPGAs. The results were obtained 

and reported, in terms of area, speedup, power, and classification accuracy. The FPGA’s 

performance matric results (especially speedup and power) were compared with that of 

the CPU and GPU. From the results, it is evident that FPGA and GPU achieved 

significant speedup compared to the CPU. The power consumption of the GPU was 

significantly higher than that of the FPGA. These results illustrate that FPGA-based 

hardware architecture for SVM can achieve better performance-per-Watt, thus suitable 

for embedded devices with stringent power requirements.  

An FPGA-based hardware accelerator was proposed for approximate SVM in 

[36], utilizing two approximation techniques, including precision scaling and loop 

perforation. The hardware was designed using Xilinx Vivado HLS tool, and executed on 

Xilinx Zynq7 ZC706 board. The results were obtained and reported, in terms of area, 

speedup, and classification accuracy. From the results, it is evident that the approximate 

computing led to higher speedup, but with the penalty of larger occupied area (or 
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resource utilization) on chip, and lower classification accuracy. In some cases, the 

significant accuracy loss did not compensate with significant increase in speedup.  

In [37], an FPGA-based hardware design was proposed for SVM classifier. In this 

case, three variable-size SVM models were implemented using different optimization 

techniques. The proposed hardware was designed using Xilinx Vivado HLS tool, and 

executed on Xilinx Zynq7 ZC702 board. The results were obtained and reported, in terms 

of area, speedup, power, and classification accuracy. Also, in this paper, the training 

phase was done offline on software; hence, the support vectors were pre-computed, and 

forwarded to the proposed hardware design, which is created only for the testing phase.  

An FPGA-based parallel processing architecture was proposed in [38] for training 

phase of SVM using Sequential Minimal Optimization (SMO). The proposed hardware 

design was executed on Xilinx Virtex-6/7/Ultra-scale FPGAs. The synthesis results were 

obtained and reported, in terms of area, throughput, and speedup; however, the 

classification accuracy results were not reported. In this case, the authors utilized the 

hardware friendly kernel (HFK) for SVM training, which leads to reduction in precision 

of the floating-point operations. Although marginal loss in accuracy is acceptable for 

testing, utilizing HFKs for training would result in an inefficient construction of a hyper-

plane during training.  

In [39], a FPGA-based hardware-software co-design was proposed to accelerate 

the SVM algorithm by utilizing a two-level approach: first to optimize the global 

structure of the SVM; and second to refine it through the design exploration. The 

proposed architecture was designed using Xilinx Vivado HLS tool, and executed on 

Xilinx Zynq Zedboard. The results were obtained and reported, in terms of area, latency, 
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and speedup; however, the classification accuracy results were not reported. As authors 

indicated, for high values of SVM parameters, the resource utilization (i.e., occupied 

area) increased significantly, which would be an issue for embedded devices with 

stringent area requirements. In this paper, the authors extensively discuss and analyze the 

advantages/disadvantages of utilizing the HLS tools to transform the designs written in 

C/C+ to HDL, thus providing insight into the HLS inefficiencies, which would be very 

useful when creating optimized hardware architectures in order to improve certain 

performance metrics, including the latency.  

An FPGA-based coarse-grained reconfigurable hardware architecture was 

proposed in [40], for various machine learning (ML) algorithms, including SVM, 

decision trees, and artificial neural networks. The hardware was designed using Xilinx 

Vivado tool, and executed on Xilinx Virtex-7 FPGA. The results were obtained and 

reported, in terms of area, and speedup; however, the classification accuracy results were 

not reported. In this case, in order to change from one ML algorithm to another, authors 

claim that the reconfigurable processing nodes (RPNs) of the proposed architecture, can 

be reconfigured individually; however, no details are provided how this can be done. This 

requires partial reconfiguration of the FPGA; thus, adding significant complexity to the 

design process, which has not been addressed or discussed in the paper.  

A scalable FPGA-based architecture was proposed in [41] to accelerate the SVM 

classification. The hardware was designed in VHDL, and executed on Altera Stratix III 

EP3SE260 board. The results were obtained and reported, in terms of speedup; however, 

the occupied area was not reported. Furthermore, in this paper, the authors only proposed 

the hardware design for the testing phase. Hence, the support vectors were pre-computed 
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and stored in the on-chip memory for subsequent processing during the testing phase. The 

same authors proposed a design flow for the SVM training phase in [42]. 

From this investigation, it is evident that most of the existing works proposed 

hardware architectures either for testing or for training, but not for both. In summary, 

from this investigation, and to the best of our knowledge, we could not find any similar 

work as ours, in the published literature, that provides FPGA-based hardware accelerators 

for CO-based SVM, especially on embedded devices, nor could we find any similar work 

that proposed system-level architectures, which is imperative for the machine learning 

applications in real-world scenarios. 

3.6 Chapter Summary  

In this chapter, we introduced novel, unique, customized, and optimized FPGA-

based hardware accelerator for convex optimization (CO)-based support vectors 

machines (SVM) on embedded devices. Our hardware architectures for CO-based SVM 

were created in such a way to be generic, parameterized, and scalable; hence, without 

changing the internal architectures, our hardware designs can be used to process different 

datasets with varying sizes; can be executed on different embedded platforms, including 

the platforms with recent FPGAs such as Virtex-7 chips; and can be utilized for 

linear/non-linear separable, multi-dimensional datasets, making it suitable for various 

machine learning applications such as medical testing for cancer diagnosis, data analysis 

for quality control, image classifications, and speech recognition. By providing generic 

and independent IPs (intellectual properties) for each stage, these independent IPs can be 

utilized for any machine learning or similar application, and are not limited to a specific 

application.   
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Our proposed embedded hardware accelerators can be reconfigured (on-the-fly) to 

select the most suitable mathematical kernel (out of three different kernels, i.e., linear, 

polynomial, and Gaussian radial basis function), based on the requirements of a given 

machine learning application. Our proposed hardware architectures/accelerators and 

techniques were created and optimized considering the constraints associated with the 

embedded devices as well as the requirements of the CO-based SVM algorithm.  

We also introduced unique and efficient system-level architecture for our 

proposed embedded hardware accelerators for CO-based SVM, in order to process the 

data efficiently and effectively. With the system-level architecture, we created and 

integrated unique pre-fetching techniques to reduce the memory access latency and to 

facilitate real-time processing of our proposed hardware accelerators.  

To the best of our knowledge, we could not find any similar work in the published 

literature that provides FPGA-based hardware accelerators/architectures for CO-based 

SVM on embedded devices, nor could we find any similar work that proposed system-

level architectures, which is imperative for machine learning applications for real-world 

scenarios.   

Our proposed embedded hardware accelerators for CO-based SVM executed up to 

79 times faster than their software counterparts on the embedded processor, and also 

executed up to 35 times faster than the equivalent software running on a desktop 

computer. This significant performance improvement was due to several hardware 

optimization techniques incorporated into our embedded hardware architectures, 

including creating customized and optimized architectures by exploiting inherent 

parallelism and pipeline nature of the computations/tasks; designing computations/tasks 
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to overlap with memory access; burst transfer and pre-fetching techniques. Furthermore, 

our embedded hardware accelerators achieved up to 100% classification accuracy. It was 

also observed that our embedded hardware accelerators achieved better performance 

(with a constant number of iterations to find the minima for the convex optimization, 

requiring much less number of iterations) compared to that of the desktop computer. 

From the results and analysis of our proposed hardware accelerator, it was also observed 

that the accuracy results and the speedup results increased with the increasing data size. 

These performance metrics are crucial especially for real-time machine learning 

applications on resource-constrained embedded devices.   

Considering the resource utilization values (i.e., occupied area on chip), it was 

observed that those values were compatible with our previously proposed efficient 

FPGA-based hardware accelerators for applications with similar computation complexity 

on embedded device [44], [45], [47]. Since pre-fetching techniques integrated to reduce 

the memory access latency added extra hardware resources, it is important to consider the 

speed-space tradeoffs, especially in embedded devices with their limited hardware 

footprint.   

These experimental results are encouraging and indeed show a great potential in 

creating and utilizing FPGA-based hardware architectures to support and accelerate 

machine learning applications, specifically on embedded platforms. The compact size of 

our proposed accelerators as well as the ability of our embedded architectures to 

dynamically train from the unstructured datasets, further enhance the potential of 

deploying machine learning applications on embedded devices. Currently, we are 

exploring the most recently proposed optimization techniques for SVM [7] and deep 
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neural mapping SVM. We are also planning to provide dynamic reconfigurable hardware 

accelerators [36], [37], [46] for machine learning applications to integrate smart and 

adaptive traits to our designs.  

Power consumption is another major issue in resource-constrained embedded 

devices. However, in this chapter, we do not report power, mainly because Xilinx Power 

Analysis tools, for the ML605 platform with Virtex-6 FPGA, reports estimated power, 

which is not necessarily accurate. Also, FPGAs typically consume less power than 

embedded processors [10]. Regardless, we are planning to investigate sophisticated 

power analysis tools to measure power consumption of our FPGA-based hardware 

accelerators on embedded devices.   

In this chapter, we introduced novel, unique and optimized embedded hardware 

accelerator architecture for data classification using SVM on portable and mobile 

embedded devices. SVM is one of the popular data classification algorithm used in 

machine learning. Applications such as medical diagnosis, ionosphere data analysis, 

SVM can be used to categorize efficiently by reducing the generalization errors. We 

discussed the implementation details for both embedded software and embedded 

hardware architecture. We performed experiments to illustrate the feasibility of 

scalability of the accelerator modules suitable for large-scale real-time data processing. 
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CHAPTER 4  

SYSTOLIC ARRAY ARCHITECTURE FOR SUPPORT VECTOR MACHINES 

Many machine learning applications have found their way into portable mobile 

devices, which have limited resource availability. In this chapter, we investigate parallel 

processing architecture for machine learning applications, since our previous work 

[219],[220],[221] on FPGA-based parallel processing architectures for compute/data-

intensive applications demonstrated significant performance-gain with the penalty of 

area. Considering these tradeoffs, we introduce a novel, unique and efficient hardware 

architecture to accelerate support vector machines using systolic array configuration on 

embedded platforms. We evaluate the feasibility, efficiency, and scalability of our 

hardware architecture utilizing both embedded software and hardware optimization 

techniques. Our design is generic, parameterized and adaptable with various numbers of 

systolic arrays for machine learning applications. Our proposed hardware design achieves 

107 times speedup compared to its software counterpart and can also achieve 100% 

classification accuracy. 

4.1 Introduction 

Machine learning is a method of data analysis that enables a system to 

automatically learn and perform a specific task without explicit instructions. It is part of 

Artificial Intelligence (AI), for extracting valuable information from large volume of data 

using algorithms and statistical models [15]. Due to the benefits of identifying important 

insights in data, machine learning has spread into various fields of applications such as 

cyber-security, health-care, transportation etc. In addition, the capabilities and flexibility 

of mobile and embedded devices are steadily increasing to incorporate various machine 
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learning techniques, which in turn pose serious challenges and design limitations such as 

stringent area, memory and power limitations. 

Machine learning can be broadly classified into two categories: supervised 

learning (classification) and unsupervised learning (clustering). In supervised learning, 

pre-labeled datasets are used to train a system to perform specific task whereas in 

unsupervised learning, the system is trained by clustering the data into different classes 

without using pre-labeled datasets. However, supervised learning is popular due to the 

availability of large volume of data. As the volume of data size increases, the computing 

time to train a system increases. In order to handle such enormous amount of data, the 

machine learning algorithms are becoming more complex, requiring significant 

processing power. A typical general-purpose processor is inefficient to cater for such 

substantial processing power and the existing machine learning algorithms (currently 

suitable for processor-based design only) are not executable as is on embedded platforms. 

Consequently, some kind of new hardware architectures is required to support machine 

learning applications on mobile and embedded devices. 

Our main objective is to provide optimized hardware architectures and techniques 

to accelerate machine learning applications on embedded mobile devices.  In this chapter, 

we focus on Support Vector Machines (SVM), which is one of the most popular 

classification algorithms in machine learning applications. The hardware accelerator is 

optimized to accelerate classification methods by providing a dedicated hardware design 

and customizing the execution overhead compared to general-purpose processor, thus 

improving area, power and speedup performance. We make the following contributions 

in this chapter: generic, parameterized and scalable hardware accelerator for support 
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vector machines, unique optimization techniques including pre-fetching, burst transfer, 

parallel systolic array configuration, adaptable and efficient system-level design suitable 

for different fields of machine learning applications. 

Support Vector machines is a classification algorithm developed by Cortes and 

Vapnik in 1995 [28]. It involves training and testing process [24]. During the training 

phase, the SVM classifier constructs a hyper-plane separating two different classes of 

datasets. In geometry, a hyper-plane is a subspace (in our case, a 2D-plane) with (n-1)-

dimensions compared to n-dimensional ambient space. The margin width of the hyper-

plane determines the distance measure of classification between two separate classes. 

Higher the margin width implies higher accuracy of data classification. Margin width of 

the hyper-plane can be increased using mathematical optimization techniques [137] such 

as convex optimization [23]. Furthermore, increasing the margin width of the hyper-plane 

using convex optimization and efficient techniques to solve convex problems is 

convenient for SVM classifier to handle large compute-intensive and data-intensive 

applications; however, a general-purpose process is incapable to cater for high processing 

power requirements. In addition, the formulation of the SVM utilizes the mathematical 

kernel techniques [94], which further enable the SVM classifier to classify non-linearly 

separable data. During the testing phase, the new unclassified data are passed to the 

trained SVM model utilizing the sign verification step to determine the respective class. 

For real-world applications, the characteristics of the datasets vary based on 

different factors. In order to compensate for different applications, the classifier must be 

generic to accommodate these variations in the datasets. Therefore, SVM provides 3 most 

popular mathematical kernels (linear, polynomial, Gaussian kernel) suitable for linearly 
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separable and non-linearly separable data. Choosing the right mathematical kernels and 

the specific parameters determined by cross-validation method [24] can help to achieve 

high accuracy results. Furthermore, the convex optimization formulation is solved by 

using the sequential minimal optimization approach. This approach chooses two data 

point at any instance to determine the direction of the gradient descent to find the minima 

value. Using the minima values, the convex optimization maximizes the margin width on 

the hyper-plane. Since, this is an iterative process; hardware design can take advantage of 

parallelism inherent in the SVM algorithms. Also, a hardware accelerator would avoid 

the execution overhead such as fetching and decoding as in processor-based design, 

thereby improving the overall area, power and speedup performance. Therefore, it is 

imperative to develop dedicated hardware architecture to make use of SVM iterative 

process to accelerate machine learning applications.  

4.2 RELATED WORK 

Table 1 Literature review 

Ref Contribution Platform 
Resources 

Utilization 
Acc 

Speedu

p 

Po

w 

[85] 

Systolic chain of PEs, pre-
computed support vectors 

FPGA, Xilinx 
Virtex-5 

5162-slices, 64-DSP, 
329kB-mem, 74-
BRAM 

88 
% 

~33 fps 
N/
A 

[138] 

Training phase with 
reconfig. Arch-
DT,SVM,ANN 

FPGA, Xilinx 
Virtex-7 

1062-slices, 12-DSPs 
N/A 

42.79-
66.71x 

N/
A 

[43] 
Training-Matlab, Decision 
boundary condition-HW 

Matlab, Xilinx 
xc5vlx110t 

2010-33360:slices, 0-
515:DSP, 27-63:IOBs 

N/A N/A 
1.4-

2 

[139] 

Multiplier-less kernel-
systolic array, offline 
training MATLAB 

Matlab N/A 
N/A N/A 

N/
A 

[48] 

Co-processor design, SMO 
decomposition 

FPGA, Xilinx 
Virtex-5 

27735-37549LUTs, 
32-128DSP, 16-
32BRAM 

99.1
2 

18-21x 
10
W 

Propose

d design 

Systolic array – kernels, 
solver, testing 

FPGA, Xilinx 
Virtex-6 

8390-slices, 236-
DSP, 118-BRAM 

95 
% 

107x 
3.4
2 

Recently, hardware acceleration using FPGAs has gained interest due to ease of 

programmability. We surveyed the existing research work on hardware support for SVM 
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classifier. In this regard, we investigated ways to utilize FPGAs to design, develop, and 

implement high-dimension, large-scale data classifier. From the survey papers 

[140][141][142], we have extracted the related existing research work based on systolic 

array configuration. 

The paper [85] presents first steps towards realization of generic systolic chain of 

processing elements (PEs) for SVM. The performances of the systolic chain of PEs are 

evaluated for image and video applications. The paper presents architecture details of 

distributed pipelined architecture, efficient management of memory and data transfers, 

fan-out complexity of routing input samples to systolic array modules. Systolic chain of 

computing elements are designed and implemented for SVM decision boundary 

condition. We believe extending the work to SVM training would result in considerable 

improvement in terms of speedup, due to the inherent parallelism of SVM training 

process.  

In [138], an ensemble type of architecture was presented to implement decision 

trees, neural networks and SVM and evaluated using 18 benchmark datasets. The authors 

provide a comparative analysis in terms of speedup performance for various machine 

learning algorithms. The analysis can be used to identify the similar computing procedure 

used by many machine learning classifier. Identifying the similar computing procedure to 

perform classification might provide insights to choose the critical computations for 

systolic array implementation. Thereby, the most time consuming computations can be 

accelerated by instantiating multiple systolic arrays.  

An FPGA-based design was proposed for decision boundary conditions using 

multiplier-less kernel implementation technique for image processing in [43]. In this 
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case, only the classification step of the SVM was implemented using the proposed 

multiplier less techniques to reduce power. However, the training process of SVM was 

computed offline using MATLAB, which in many cases requires the hardware support to 

improve the computational time. The support vectors obtained from the MATLAB was 

stored in the FPGA’s internal memory and utilized for decision boundary conditions. In 

these scenarios, incorporating the multiplier less kernel technique might be useful in 

order to reduce power but which in turn might add execution time for the overall decision 

conditions. Extending the multiplier-less kernel approach to the training process on 

hardware might lead to additional execution time at the cost of overall training 

performance. The power consumption was reported in the range of 1.479 to 2.051W for 

the multiplier-less kernel implementation.  

In [139], the author present multiplier-less kernel operation for SVM using 

software based systolic array on Matlab. Using Matlab, the computed α values for 

support vectors are virtually stored in the systolic array chain for test samples. The 

processing elements (PEs) mainly consisting of adders and sub tractors are used to reduce 

the computational complexity of matrix multiplications and presented a reduction from 

O(n3) to O(n). Based on the presented reduction in computational complexity, it is 

evident that hardware design for systolic array seems to improve the performance 

significantly for large-scale datasets.  

In [48], a parallel implementation of FPGA as coprocessor was proposed for 

SVM. With this design, the speedup obtained was around 20x compared to CPU design 

consuming 10W power. Although, the design utilize PCI and FPGA as a co-processor to 
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parallelize compute-intensive arithmetic operations, it is not suitable for mobile 

embedded platforms, which has stringent area and power restrictions.  

Based on the aforementioned existing work, implementation techniques are 

limited to part of the SVM’s process. In most cases, the support vectors are pre-computed 

and used for decision boundary conditions computation using systolic arrays. Therefore, 

our proposed work in this paper aims to extend the systolic array to the complete SVM 

training and testing process (including mathematical kernels, convex optimization and 

boundary decision conditions). Extending these concepts, can help reap the actual benefit 

inherent to parallel processing capabilities of FPGAs and SVM. In the following section, 

we provide the system-level details and experimental platforms used to design parallel 

systolic array for support vector machines. 

4.3 Design Approach 

In our design, the proposed hardware architecture is implemented using 

hierarchical and modular-based approaches, in which the SVM algorithm is categorized 

into 3-level of abstraction. The higher-level involves training and testing process of 

SVM, followed by mathematical optimization level at the second level. The lower 

abstraction level includes the fundamental components for arithmetic and vector 

computations. The aforementioned abstraction structure facilitates resources sharing at 

different level. The components for arithmetic and vector computations are implemented 

using the single-precision floating point units to optimize for area and power without 

compromising the accuracy of the results. These operators are provided by Xilinx IP core 

libraries.  
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4.3.1 Experimental Platform 

Our proposed SVM accelerator IP is developed using Xilinx’s Virtex family 

FPGAs [103]. Specifically, virtex-6 XC6VLX240T-1FFG1156 FPGA [143][105], which 

consists of high-performance logic slices (37680 slices) with embedded hardware IP 

resources such as 748 DSP48E1 slices, 512MB DDR3-SDRAM and soft microprocessor 

capabilities.  

For our experiments, the DSP slices are used efficiently to improve the parallel 

processing capabilities and logic slices provides a foundation for programmable platform 

alternative to ASIC design. Soft microprocessor, i.e., Micro-blaze, is used for handling 

the control signals between customized-IP for SVM, UART serial ports, AXI 

communication protocols, DDR3-SDRAM, AXI timers and Interrupts [144], [117]. 

The RTL is design using mixed hardware description language (both VHDL and 

Verilog) [145] and as proof-of-concept, we have also developed embedded software 

algorithm in C++. Xilinx Platform Studio (XPS) [146] [147] [148] is used to build the 

base system-level design and the RTL is designed and evaluated using Xilinx ISE and 

ISim tools [149] [150] [151]. The embedded software is developed using Xilinx Software 

Development Kit (SDK), which is based on Eclipse open source standard. Our 

experimental results are also compared with the baseline python program results (Scikit-

learn), to verify the correctness of the results. The overall system-level architecture is 

illustrated in the fig. 4.1. 

4.3.2 Framework of Embedded Hardware 

Micro-blaze is a 32-bit soft processor based on RISC architecture optimized by 

Xilinx for efficient FPGA implementation and available as part of Xilinx embedded 
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development kit (EDK) [152] [153] [154]. For our experiments, we have selected the area 

optimization, after synthesis, which translates to 5 DSP48E1 slices and 38 BRAM 

operating at 100MHz. The micro-blaze initiates the AXI timer [120] and data pre-

fetching process using AXI Master Burst transfer [155].  

The automated design to access datasets considered for the current experiments 

[122] are stored in the block ram memory [106]. Initially, the data is passed through 

mathematical kernel block to distinguish linearly separable and non-linearly separable 

data sets. Then, the output matrix of the mathematical kernel is passed through the 

convex optimization solver as shown in the fig. 2. The solver finds the minima value and 

stores the corresponding α and bias values in the DDR3 using AXI master burst 

controller and at the same time signaling the micro-blaze to indicate the training process 

for SVM is completed.  

The new data is then passed through the testing block to classify the data into 

respective classes. Although, the training process for SVM is compute intensive and time 

consuming, the testing is process is data-intensive depending on volume of the new 

incoming data. The major step for testing process involves sign verification step and 

sorting the data into assigned class. Therefore, in order to fulfill both the requirements for 

compute-intensive training process and data-intensive testing process, we have 

implemented parallel systolic array configuration for SVM as shown in fig. 2. 

Systolic arrays can effectively make use of SVM’s massive parallelism of 

compute-intensive and data-intensive training and testing process. Especially, with 

efficient implementation on FPGA devices, the systolic array can achieve better speedup 

performance compared to fixed modules or general-purpose architecture designs.  
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Our proposed design for systolic array implementation for SVM is favorable for 

the following 3 reasons.  

• First, the high demand for processing power for SVM can be distributed among 

individual clusters of a systolic array.  

• Second, our design is parameterized and scalable thus; the FPGA can be 

configured to occupy significantly less area for specific applications.  

• Third, the framework of shared-resources is the most appealing aspect when 

considering the mobile embedded devices.  

Taking into account of the aforementioned advantages, we performed experiment 

on our parallel systolic array design by varying the number of instances, execution 

overhead including single-instruction stream, multiple-data stream (SIMD) and multiple-

instruction stream and multiple-data stream (MIMD) and results are presented in the next 

section. 

To evaluate the accuracy and performance of our embedded design, we performed 

experiments using two benchmark datasets from UCI machine learning repository [121]. 

The two datasets are as follows: Ionosphere datasets [122] and Wisconsin breast cancer 

diagnostic dataset [21]. Ionosphere dataset consists of radar data obtained by using 16 

high-frequency antennas. The returned complex electromagnetic signal is processed using 

an autocorrelation function to determine the presence of any structures in the earth’s 

ionosphere. This datasets consists of 351 instances with 34 attributes and suitable for 

binary classification. Cancer datasets is obtained by determining the features of a cell 

nucleus of either malignant or benign cancer cells. Cancer dataset represents the 

characteristics of cell nuclei using 30 different attributes and 569 instances.  
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Figure 4.1: Three high-level stages of SVM algorithm 

4.4 Experimental Results 

We performed experiment to evaluate the speedup performance and feasibility of 

our proposed design. The speedup performance is measured in real-time using the AXI 
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timer operating at FPGA’s clock frequency at 100MHz. The speedup for each systolic 

array is calculated using the equation (1) as micro-blaze execution time over embedded 

hardware execution time.  

 

Figure 4.2: Speedup vs. Data size 

 

Figure 4.3: Speedup vs. Data size 
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Table 16. Execution time, speedup and accuracy for Cancer dataset – Linear 

Mathematical Kernel 

Train 

Set  

Micro-blaze 

Exec Time (s) 

HW 1-inst Exec 

Time (s) 

Speedup HW 2-inst 

Exec Time (s) 

Speedup Acc (%) 

10 % 161865353 7924113 20.43 6526249 24.80 82.76 

20 % 325818822 23388548 13.93 13290771 24.51 92.85 

30 % 659149652 34461989 19.13 16781132 39.28 91.03 

40 % 1341043549 34498506 38.87 18081648 74.17 91.54 

50 % 2117706879 39129865 54.12 24178951 87.58 92.26 

60 % 3105162265 56985371 54.49 31804238 97.63 91.68 

70 % 4296218440 70827842 60.66 40131605 107.05 92.47 

80 % 5772976007 77416316 74.57 68077162 84.80 91.32 

90 % 7557691210 103336947 73.14 73204946 103.24 92.96 

Parameters: C = 2, degree (d) = 2, gamma (γ) = 0.005, Maximum # of iterations = 1000 

The accuracy of the SVM classifier is a measure of the total number of correct 

data classification divided by the total number of test data, as given in the equation (2). 

The datasets are partitioned evenly to evaluate the accuracy of SVM classifier and the 

results are compared with the baseline results from open-sources python code [132]. 

Partitioning the datasets for training and testing purposes provided us a method to 

interpret the effect of implementing different number of systolic array and the overall 

efficiency of the convex optimization module. 
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Table 17. Execution time, speedup and accuracy for Ionosphere dataset – Linear 

Mathematical Kernel 

Train 

Set  

Micro-blaze Exec 

Time (s) 

HW 1-inst Exec 

Time (s) 

Speedup HW 2-inst Exec 

Time (s) 

Speedup Acc (%) 

10 326247324 10468579 31.16 10026519 32.54 64.51 

20 994127844 30749019 32.33 28474615 34.91 63.21 

30 2014535135 52676038 38.24 49606272 40.61 66.39 

40 3562645809 86721348 41.08 82743009 43.06 59.8 

50 5251044535 102352939 51.30 80376897 65.33 70.36 

60 7620470915 138372431 55.07 100358129 75.93 84.06 

70 10483075447 168745617 62.12 146884860 71.37 98.45 

80 13975767881 218558954 63.95 184837167 75.61 98.45 

90 19475226254 316911548 61.45 247726125 78.62 96.29 

Parameters: C = 2, degree (d) = 2, gamma (γ) = 0.005, Maximum # of iterations = 1000 

Table 18. Resource utilization 

Number of BRAM Number of DSP48E1 slices Number of occupied slices 

118 
236 8390 

Table 1 and 2 presents the embedded software and hardware execution time. The 

embedded hardware is measured for 2 parallel systolic array instances. We varied the 

number of instances in the range of 1, 2, 4, 8 and found out that 2 systolic array was 

sufficient to accelerate the SVM classification for our specific datasets. The table 1 & 2 

present the results for Linear kernel, however a brief comparison of speedup for the 3 

mathematical kernel (linear, polynomial, RBF) are shown in the figure 4.3 and 4.4. 

Figure 4.7-4.10 demonstrates the impact of number of instances with respect to hardware 

execution time and speedup for cancer datasets. The impact of systolic array was 

relatively low for polynomial kernel as compared to other linear and RBF kernel and it is 

evident from the figure 4.8-4.10.  
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Figure 4.4: Graph of hardware execution time vs. data size for 1 and 2 instance – Cancer 

datasets, Linear Kernel 
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For default SVM vs Parallel systolic array (1 & 2 instances, Cancer dataset - Linear kernel)
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Figure 4.5: Graph of hardware execution time vs. data size for 1 and 2 instance – Cancer 

datasets, Polynomial Kernel 

 

Figure 4.6: Graph of hardware execution time vs. data size for 1 and 2 instance – Cancer 

datasets, RBF Kernel 

0

100000000

200000000

300000000

400000000

500000000

600000000

1707 3414 5121 6828 8535 10242 11949 13656 15363

H
a

r
d

w
a
r
e

 e
x

e
c
u

t
io

n
 t

im
e

 (
c
lo

c
k
 
c
y

c
le

s
)

Data Size (Number of samples, n x Number of dimensions, m)

GRAPH 2: Hardware execution time vs Data size 

For default SVM vs Parallel systolic array (1 & 2 instances, Cancer dataset - Polynomial kernel)

SVM-Poly 1 Instance SVM-Poly 2 Instances

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

450000000

500000000

1707 3414 5121 6828 8535 10242 11949 13656 15363

H
a

r
d

w
a

r
e

 e
x

e
c
u

t
io

n
 t

im
e

 (
c
lo

c
k

 
c
y

c
le

s
)

Data Size (Number of samples, n x Number of dimensions, m)

GRAPH 3: Hardware execution time vs Data size

For default SVM vs Parallel systolic array (1 & 2 instances, Cancer dataset - RBF kernel)

SVM-RBF 1 Instance SVM-RBF 2 Instances



 
 

116 
 

 

Figure 4.7: Graph of speedup vs. data size for 1 and 2 instance – Cancer datasets, Linear 

Kernel 

 

 

Figure 4.8: Graph of speedup vs. data size for 1 and 2 instance – Cancer datasets, 

Polynomial Kernel 
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Figure 4.9: Graph of speedup vs. data size for 1 and 2 instance – Cancer datasets, RBF 

Kernel 

Table 19. Execution time and speedup for Cancer dataset – with 2 instances 

Hardware execution time (clock cycles) 

2 Instances 

Speedup w.r.t Micro-blaze 

Software 

Speedup w.r.t 1 instance 

hardware 

Lin Poly RBF Lin Poly RBF Lin Poly RBF 

6577614 131620218 49506714 24.61 2.75 14.13 1.20 0.94 0.93 

13069473 139466677 102632928 24.93 12.19 17.50 1.79 1.00 0.92 

16710370 154645119 112085381 39.45 29.26 21.76 2.06 1.02 1.00 

20149006 193305613 121217907 66.56 40.23 36.89 1.71 0.98 1.05 

25688549 224863725 136752785 82.44 54.95 55.67 1.52 1.04 1.09 

31937629 274041069 169782113 97.23 72.18 60.70 1.78 1.01 1.31 

48320738 330319529 273059077 88.91 60.20 57.42 1.47 1.06 1.23 

68624072 374548485 343348766 84.12 57.91 66.57 1.13 1.11 1.12 

76708889 458258150 453057020 98.52 47.95 55.59 1.35 1.05 1.02 

Average Speedup 67.42 41.96 42.91 1.56 1.02 1.08 

As mentioned, in the previous section, the parameters which determine the 

orientation of the hyper-plane are set as C=2, degree of the polynomial as 2 and a gamma 

value of 0.05 with a maximum number of iteration of 1000 for convex optimization are 

selected. It is observed that as the number of available data for training the SVM model 
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increases, the accuracy also increases thus increasing the execution time. Based on the 

systolic array implementation, the execution time is reduced significantly and also 

number of occupied slices is reduced due to resources sharing facility. Using a single 

instance systolic array, a speedup of 74 is achieved, however, with the 2-instance systolic 

array; a speedup of 107 was observed compared to the embedded software architectures. 

Table 20. Execution time and speedup for Cancer dataset – with 4 instances 

Hardware execution time (clock cycles) 

4 Instances 

Speedup w.r.t Micro-blaze 

Software 

Speedup w.r.t 1 instance 

hardware 

Lin Poly RBF Lin Poly RBF Lin Poly RBF 

6621474 136250557 49637011 24.45 2.65 14.09 1.20 0.91 0.93 

13301979 142121941 103138928 24.49 11.96 17.41 1.76 0.98 0.92 

16711440 157291069 112237912 39.44 28.77 21.73 2.06 1.01 1.00 

20531068 198159327 121679926 65.32 39.24 36.75 1.68 0.96 1.05 

25645414 226679427 136976330 82.58 54.51 55.57 1.53 1.03 1.09 

32312715 281685159 170012310 96.10 70.22 60.61 1.76 0.98 1.31 

40686304 342195776 274202777 105.59 58.11 57.18 1.74 1.02 1.22 

68652288 371140304 344115110 84.09 58.44 66.43 1.13 1.12 1.12 

73692686 462429729 457586208 102.56 47.52 55.04 1.40 1.04 1.01 

Average Speedup 69.40 41.27 42.76 1.58 1.00 1.07 

 

Table 21. Advanced Extensible Interface Master Burst Transfer configuration 

IP Configurations Parameters 

Maximum Burst Length 256 

Address Pipeline Depth 14 

Master Length Width 20 

Native Data Width 32 
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Table 22. Execution time and speedup for Cancer dataset – with 8 instances 

Hardware execution time (clock cycles) 

8 Instances 

Speedup w.r.t Micro-blaze 

Software 

Speedup w.r.t 1 instance 

hardware 

Lin Poly RBF Lin Poly RBF Lin Poly RBF 

6671329 142512261 49690130 24.26 2.54 14.08 1.19 0.87 0.93 

13361585 144867026 103227704 24.38 11.73 17.40 1.75 0.96 0.92 

16817152 163123213 112488198 39.20 27.74 21.68 2.05 0.97 1.00 

20623317 200390070 122103503 65.03 38.80 36.63 1.67 0.95 1.04 

25779519 228932812 137639892 82.15 53.97 55.31 1.52 1.02 1.09 

32478974 286973507 170022001 95.61 68.93 60.61 1.75 0.96 1.31 

41046446 343419034 275560187 104.67 57.91 56.90 1.73 1.02 1.21 

69248797 376423788 345679309 83.37 57.62 66.13 1.12 1.10 1.11 

74076625 484891351 457607716 102.03 45.32 55.04 1.40 0.99 1.01 

Average Speedup 68.96 40.51 42.64 1.57 0.98 1.07 

4.5 Chapter Summary 

In this chapter, we introduced efficient and unique embedded hardware 

architecture with parallel systolic array configuration to accelerate the convex 

optimization-based support vector machines for data classification in machine learning. 

Our embedded hardware architectures are adaptable, generic and scalable. Hence, 

without modifying the internal architecture, our embedded designs can be utilized for 

different field of machine learning applications involving data classification. We 

discussed the implementation details for different number of systolic arrays for hardware 

architecture. We performed experiments to illustrate the feasibility of scalability of the 

accelerator modules suitable for large-scale real-time data processing. 
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CHAPTER 5  

OPTIMIZED HARDWARE ARCHITECTURE FOR DEEP NEURAL 

NETWORKS 

Deep learning is a subset of Artificial Intelligence (AI), which aims to build smart 

systems capable of performing tasks that typically requires human intelligence. The smart 

systems utilize statistical and mathematical approaches to analyze data to perform a task 

without human interruption. Due to the accumulation of large volume of data over the 

past decade, the time required for deep learning applications to perform a task has 

increased exponentially. In order to improve the execution time for deep learning 

applications, various software optimizations and hardware support has been proposed. 

The scope of this research work is to examine the feasibility of a programmable device to 

aid the deep neural network acceleration. Our previous work on machine learning 

applications has demonstrated significant improvements in terms of speedup performance 

for support vector machines. In this research work, we will focus on hardware support for 

deep neural networks using programmable logic devices.  

Hardware platforms such as ASIC, CPU, GPU and FPGAs have been integrated 

to build a neural network, among which GPUs and FPGAs play major role for 

acceleration. However, despite the high cost and excessive power consumption, GPUs 

dominate the acceleration for neural networks. Our objective seeks to provide a 

customized FPGA-based architecture to support deep neural networks for power-efficient 

design. In this research, we aim to illustrate the design methodologies to leverage the 

flexibility & power efficiency of a programmable device, present RTL-level details and 

system-level architecture and lastly examine the potential gains in terms of energy and 
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speedup performance. Experiments are performed using benchmark datasets for medical 

diagnosis and radar data analysis. 

5.1 Introduction and Motivation 

Recent breakthroughs in the development of Neural Networks (NNs) have led to 

state-of-the-art performance for various deep learning applications [156][157][158]. 

Neural Networks have been among the most powerful and widely used techniques in 

cognitive applications. DNNs have outperformed classical techniques and are found in a 

wide range of applications such as Aerospace & defense, financial services, healthcare, 

retail, IT & telecom sector etc [159][160][161][162]. However, Deep Neural Network-

based designs are complex and computationally intensive. The complex topologies of 

DNNs with many layers and numerous of parameters have escalated the cost of power 

consumption. In order to deploy these technologies in mobile devices, area and power are 

the major constraints and pose a serious challenge to integrate into portable embedded 

devices. 

As the advancement in silicon technology is reaching its theoretical limits, any 

improvements on typical architectures is unable to keep pace with the computational 

requirements of deep learning. Hardware acceleration plays a crucial role for real-time 

operations. In 2010, Microsoft research group [3] proposed augmenting CPUs with 

configurable platforms to enable deep learning applications. Eventually in 2016, 

Microsoft incorporated these configurable platforms only for deep learning inference. 

Despite the high cost, fixed architecture and high power consumption, GPUs dominate 

the acceleration for training a deep learning model.  
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As large scale applications (such as scientific computing, social media and 

financial analysis) gain prominence, the computations and storage demands of modern 

systems have far exceeded the available resources. It is expected that, in the next decade, 

the amount of information managed by world-wide data centers will grow 50-fold, while 

the number of processors will increase only by 10-fold. In fact, the electricity 

consumption of just the US data centers have increased from 60 billion kWh in 2016 to 

73 billion kWh in 2020 [163]. It is clear that, a raising performance demands will soon 

outpace the growth in resource budgets; hence, over provisioning the resources alone will 

not solve the conundrum that awaits the computing industry in the near future. 

In this research work, we introduce energy-efficient FPGA-based hardware 

architecture for DNN acceleration with on-chip high speed data transfer technique, 

scalable IP modules to handle large-scale data and a generic design suitable for various 

applications. We present the systematical approach to explore tradeoff analysis for area 

and power cost by varying the number of parallel processing elements and minimizing 

the memory access latency. 

This chapter is organized as follows: In sub-section 5.2, we present the necessary 

details of deep neural network algorithm and existing work related to FPGA accelerators. 

In sub-section 5.3, we present the comparative analysis of various platforms and 

evaluation plan for steps considered to develop accelerators. Our experimental results and 

analysis are reported and discussed in sub-section 5.4. In the last sub-section, we 

summarize our work and present concluding remarks for the chapter.  

Our objective is to provide customized & optimized hardware architectures to 

support and accelerate deep neural network on embedded platforms considering the 
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associated constraints of embedded platforms. We provide the necessary chip-level 

details and efficient data accessing techniques to support deep learning applications on 

portable embedded devices. 

5.2 Background Study 

Neural networks are continuously evolving [164][165][166] due to various 

factors; among which the two main reasons for such a rapid advancement of neural 

networks are due to the availability of large-volume of annotated data and the 

improvements in the silicon technology to support immense computing power 

requirements. In this section, we present the background study for deep neural network 

and explore the existing work to accelerate DNNs using FPGA. In the subsequent 

section, we present a comparative analysis among different available platforms and 

tradeoff-advantages relative to specific computing platform. 

5.2.1 Deep Neural Networks 

Deep Neural Networks (DNNs) are typically a set of stacked layer of networks. In 

general, DNN consists of input layers, L-hidden layers and an output layer. Each layer 

consists of n-neuron with weights, bias and sample feature as input. Input layers are 

parameterized to receive high dimensional data and feeds forward to consecutive hidden 

layers. The parameters of individual neuron, weights and bias values, are evaluated using 

mathematical optimizations such as Stochastic Gradient Descent (SGD). SGD are 

formulated to reduce error function by adjusting the weights and bias values. The errors 

are back-propagated to the first layer and iterated multiple times until a minimum value is 

reached for error function. This iterative process of adjusting the weight and bias values 

is called as training. Once a meaningful set of parameters are obtained, the inputs are 
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passed through the output layer to make useful prediction and the process is called as 

inference. 

5.2.2 Literature Review 

We surveyed the existing research work on hardware support for the DNN 

classifier. In this regard, we investigated ways to utilize Field Programmable Gated 

Arrays (FPGAs) to design, develop, and implement high-dimension, large-scale data 

classifier. From the survey papers [167][168][169], we have extracted the following 

closely related existing research work. 

In [170], the authors present 3 stage pipelined Deep Learning Accelerator Unit 

(DLAU). The three stage pipelined architecture consists of tiled matrix multiplication 

unit, part sum accumulation unit and activation function acceleration unit. The purpose of 

DLAU is to scale up accelerator architecture for large-scale deep learning networks using 

FPGAs as the hardware prototype as well as to maintain low power cost. The presented 

results achieves a speedup of 36.1x compared to Intel Core2 processor and a power 

consumption of 234mW. DNN are trained using Matlab and the corresponding 

parameters are used for inference which is implemented on Zynq Zed board FPGA. 

Although, extending the FPGA implementation to DNN training could further improve 

the speed performance. It should be noted that further detailed comparison for speedup 

relative to network and tile size would be highly recommended. With power analysis, the 

paper illustrates the power consumption for individual pipeline stages and memory access 

module with a total consumption of 234mW. 

The paper [171] presents one of the critical and important steps for translating a 

design into hardware modules. The paper highlights the inefficiency of existing tools 
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such as HLS, OpenCL and suggests a new RTL complier to efficiently allocate the 

resources for maximum throughput and performance. Manual RTL translation is time 

consuming and requires hardware skills. To address the inefficiency gap between high-

level synthesis tools and the manual RTL translation, the authors present a scalable 

solution to achieve near optimal RTL implementation. The proposed compiler is referred 

to as ALAMO, is optimized based on various design strategy to automatically set 

modular and scalable modules to accelerate the operations of deep learning. Although, a 

generic modular implementation for an efficient data transfer would be suitable for 

continuously evolving DNN architecture but the current performance of HLS or OpenCL 

tools must be scrutinized for in-depth analysis. 

In the paper [172], the authors proposed an alternative methodology, based on 

scalable hardware architecture and circuit design using stochastic based computing 

principle and stream-mode compute, to efficiently implement CNN on FPGA that 

outperforms GPUs in terms of power consumption and performance. The designs were 

evaluated using Virtex-6 and power consumption is reported at 3.61W. One of the 

concerns that rises is that when a stochastic based approach is used, extracting and 

identifying the parameters that has majority contribution for a given network would be 

useful, i.e., a quantifiable factor represented using an equation. 

The paper [173] proposed a FPGA-based accelerator for DNN using Xilinx Zynq-

7020 FPGA and evaluated using MNIST digital identification dataset to achieve up 96% 

recognition rate. It should be noted that the proposed design is limited to DNN inference. 

No details or implementation are specified for DNN training but the weights parameters 

are stored in ROM in advance for inference. The memory configuration has to be 
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addressed in the paper. Some of the implementation seems trivial in terms of DNN 

topology. Since, most of DNN has extremely complex structural topology and the 

proposed implementation lacks the scalability aspect of an FPGA design. 

In [174], FPGA-based accelerator is presented for CNN inference. The proposed 

design is based on INT8-2 compute approach using an adaptive logic module to 

accelerate low-precision inference. It would be of interest in regards to training to further 

monitor variation in accuracy. Since the approach seems to provide a potential area 

optimization but an in-depth analysis would be interesting for tradeoff analysis. 

Table 23: Literature review for neural networks 

Ref Contributions Platforms 
Resource 

utilization 

Acc. 

(%) 
Speedup 

Pow 

(W) 

Our 

work 

SOC Ensemble 
architecture IPs, On-

chip training and 
inference 

Virtex-6 

7500-10870-
slices, 107-
143-DSP, 

118-BRAM 

91 61x 3.6-4.9 

[40] 

Multi-layer-perceptron 
and radial basis ANN. 
Training phase with 

reconfigurable arch. for 
DT, SVM, ANN 

Virtex-7 
1062-slices, 

12-DSPs 
NA 66.71x NA 

[170] 

3-stage pipeline 
accelerator unit, tiled 

mat-mul, training using 
MATLAB, Inference 

using FPGAs 

Intel 
processor, 
Zynq Zed 

220-DSPs, 
280-BRAM, 
53200-LUTs 

NA 36.1x 1.814 

[171] 

Addresses the 
inefficiency of high-level 

synthesize tools, RTL 
complier to allocate max 
throughput & perf, near 

RTL implementation 

Altera 
Stratix-V 
GXA7, 

OpenCL 

256-DSPs, 
2330-BRAM, 
121k-Logic 

80 1.9x 19.5 

[172] 
Stochastic based 

computing principle & 
stream-mode compute 

Virtex-6 Freq-200MHz 87 
899.13 
GOPS 

3.61 

[173] 
Inference using FPGAs, 
pre-determined weight 

vectors in ROM 
Zynq 7020 

12-DSPs,6-
BRAMs, 

38899-Luts 
96 NA NA 

[174] 
Low-precision inference 
using FPGAs, INT8-2 
using adaptive logic 

Arria 10, 
Stratix 10 

69%-DSP, 
30%-ALM, 
19%-BRAM 

71 
200-

GOPs 
GPU-
300 
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[175] 

One single-computing 
layer for fully-connected 

computation fabric, 16-bit 
FP, hard-coded network 

weights, on-board 
inference only 

Virtex-5 
XC5VLX, 
ZynQ-7000 

900-DSPs, 
545-BRAMs, 
218600-LUTs 

98 
15.9k 
FPS 

NA 

[176] 

FPGA accelerator 
optimized for throughput, 
Scalable framework with 

four-level parallelism 

Intel i7, 
Virtex-7 
VX690T 

3600-DSPs, 
1470-BRAMs, 
433200-Luts 

99 14.84 

88-
CPU, 
225-
GPU, 
25.6-
FPGA 

[177] 
Latency-driven, weights 

reloading, SDF 
transformation, HLS 

ZynQ 
XC7Z045 

900-DSP, 
545-BRAM 

98 1.49x NA 

[178] 

Dynamic programming, 
multi-CLP accel., 

pipeline, C++ design 
entry 

Virtex-7 
VX485T, 
VX690T 

3600-DSP, 
2940-BRAM, 

84%-LUT 
NA 2.3x 11.2 

[179] 

2D systolic array 
automation flow for on-
board inference only, 8-

16 FP 

Arria 10 GX 
1150 

1518-DSP, 
2713-BRAM, 

83%-LUT 
98 NA 20.75 

[180] 

Numerically 
characterizing loop opti. 

Technique, tradeoff 
analysis relative to 

memory latency 

Intel Arria 
10 

100%-
DSP,70%-
BRAM,38-

LUT 

NA 5.5x 30.44 

[181] 
Scalable and flexible 

parallel PEs, quantization, 
on-chip buffers 

ZynQ 
XC8Z020, 
XC7Z045 

220-DSPs, 
140-BRAMs, 
56%-LUTs 

NA 6x 24.1 

[182] 

Co-Processor design, 
parallel 2D primitives, 

off-the-shelf PCI 
implementation 

Virtex-5 
LX330T 

192-DSP, 
324-BRAM 

NA 31x 0.61 

[183] 

Int. factorization, CNN 
complier translates high 
N/W specs to parallel 

microprogram. 

Virtex-5 
SX240T 

1056-DSPs, 
516-BRAM, 
48-bit fixed 

point 

- 6.5x 1.14 

[184] 
Custom processing tiles, 

fast stream memory 
interface 

Virtex-6 
VLX240T 

100% DSP, 
416-Mem 

- 133.6x 14.7 

[185] 
NoC SW config., mutli-
bank memory modules, 
32-bit FP C design entry 

Stratix-V 
GSM 
D5 

1590-DSP, 
2014-BRAM 

- 3x 7.15 

Based on the above mentioned existing work, we aim to introduce novel, 

customized, and optimized FPGA-based hardware architecture for deep neural networks 

on embedded platforms. Our architecture aims to address the major constraints associated 
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with the embedded platforms. The area, power consumptions, design reconfiguration, 

time-to-market are the major constraints associated with the embedded platforms. We 

also introduce lean and compact embedded software architecture for DNN, which is 

designed to fit into the available resources of the embedded microprocessor on chip. The 

experimental results are encouraging and indeed show a great potential in utilizing 

FPGA-based systems to support and accelerate deep learning applications, specifically on 

embedded platforms. The compact size of our proposed architectures as well as the 

ability of our embedded designs to dynamically train from the unstructured datasets, 

further enhance the potential of implementing deep learning on embedded devices. 

5.3 Design Approach and Development Platform 

In this section, we present the details of available platforms to accelerate DNN, 

provide an insight on the current technology trend and the steps to develop acceleration 

architecture of a programmable device. 

5.3.1 Comparison of Different Platforms 

In this section, we discuss various means of computing platforms suitable for 

different application domains. For instance, most of the computations of neural networks 

involve floating point operations and matrix computation. The execution flow and 

performance comparison on two popular platforms GPU, FPGA are as follows: 

• GPU: GPUs are designed to accelerate certain operations such as multiple-and-

accumulate (MAC) operations. The architecture is based on SIMD (single 

instruction multiple data) architecture to support large number of MAC, matrix 

operations etc. Recently, Nvidia started to incorporate additional module called, 

Tensor core, to accelerate specifically for neural networks computations. GPUs 
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offer immense computing power to handle data-intensive and compute-intensive 

applications. However, they are power hungry devices. For any specific 

applications, the power consumption of GPUs are almost 30x-50x more compared 

to CPUs or FPGAs. Although, GPUs can perform a lot faster than CPU or FPGA, 

the architecture is fixed and the power consumption is too high.  

• FPGAs: FPGAs are one of the promising avenues for exploring tradeoff analysis 

for area and power. It is a suitable platform to efficiently prototype a design. Due 

to their inherent nature of re-programmability, a number of different applications 

can be efficiently developed and prototyped to meet faster time-to-market 

requirements. FPGAs also offer useful solutions to develop complex design such 

as providing embedded processor, DSP blocks, IP cores, custom IP cores, I/O 

interfaces etc [186]. The important factors such as low-power requirements, less 

system cost, adaptable platforms provides an opportunities to design a high-

performance computing platforms for large-scale data applications such as deep 

learning. However, the run-time to translate and map an RTL design takes longer 

and in certain cases routing the individual blocks fails due to limited interconnect 

resources. In such cases, the user needs to carefully modify the design to meet the 

synthesis rules. 

Table 24: Comparison of various computing platforms 

 CPU  GPU  ASIC  FPGA  

Speed  Slow  Fast  Fastest  Medium/fast  

Power  Med  Highest  Lowest  Low  

Cost  Fair  High  High  Low  

Perf/W  Low  Med  High  High  

Architecture  Traditional  Compute Pow  Fixed Arch.  Reconfigurable  
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To get a clear insight, we limit our focus to GPUs and FPGA comparison. An in-

depth comparison between GPUs and FPGAs must be considered in order to make a 

reasonable choice in terms of speed, power consumption, and cost. Based on the analysis 

and survey of existing work [187][188][189][190][191][192][193][194][195][196], we 

present a speculative analysis to get an insight for GPU and FPGA comparison as 

illustrated in fig 5.2. The corresponding table 25 summarizes the contributing factor for 

each partition/range. In the graph, X-axis is the size of an applications, Y-axis is 

theoretical estimate for performance based on multiple factors such ease-of-use, power, 

cost, performance. The graph is partitioned into three segments based on the cost of the 

GPU/FPGA ranging from:  

• Partition 1: Low-end range, less than 10k  

• Partition 2: Mid-range, between 10k and100k  

• Partition 3: Data centers, higher than 100k USD. 

 

Figure 5.1: Speculative analysis for GPU vs. FPGA comparison relative to application 

size 

Partition 1: In this range, choice of GPU is more suitable compared to FPGAs, 

because the main contributing factor is the ease-of-use. Not much modification is 
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required to run on the GPUs which are less time-consuming, no hardware expertise is 

required and the perf/W gain is negligible. Almost same performance can be obtained 

from FPGAs but requires time-consuming hardware design skills. 

Partition 2: This is the range where the choice of GPUs and FPGAs becomes a 

tradeoff. For researcher or third party vendor with their own servers, they can extract the 

potential gain from FPGAs in terms of performance per Watt. With certain hardware 

design skills, a designer can make the most in terms of cost and flexibility to adapt to 

various applications. For instance, we can directly connect a camera module to FPGAs 

and make a real-time face recognition system. On the other hand, we need a host 

computer to use GPUs for real-time face recognition. Therefore, FPGAs provide a lot 

more flexibility when compared to other platforms. In case, if the designer plans to 

fabricate their own chips, FPGAs provides that flexibility as well to prototype the chip 

prior to fabrication.  

Table 25: Tradeoff analysis for GPU & FPGA 

LOW-END MID-RANGE DATACENTERS 

- Ease-of-use - 
Contributing 
factor 
- Hardware 
skills required 
for FPGAs 
- Computing 
power relative 
to platform 
price 

- Cost & Perf/W - 
Contributing factor 
- Reconfigurability to 
incorporate various 
optimization techniques 
- For example, Approx. 
computing approach for FP 
operations 
- Towards prototyping for 
ASICs, ASIPs 
- Needs to take care of 
additional overhead for area, 
power and cost 
- Choice of GPUs and FPGAs 
will be tradeoff 
- Long-term application and 
application size, budget 

- Computing power - Contributing 
factor 
- Run-time, High-end FPGAs - NA 
- FPGAs mostly fails to configure due 
to rout ability issues and hard to scale 
up for the large applications 
- AI Training - GPUs  
- AI Inference - FPGAs (recently 
being incorporated) 
- Approximate cost analysis using data 
centers service charge calculator 
- GPU - ~39 cents per million images 
(scaled value) 
- FPGAs - ~21 cents per million 
images (scaled value) 
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Partition 3: Anything over $100k, these are high-end models for data centers. 

Currently, not many FPGAs can support the applications at the Datacenter’s range. Also, 

in the cloud computing platforms such as Microsoft Azure, Amazon AWS we can find 

FPGAs only for the AI inference but not for AI training. Because translating the design, 

routing the design using limited interconnects in the FPGA will most typically fail at that 

level. Therefore, to the best of our knowledge, we could not find FPGAs that can handle 

the computing power required by the cloud computing platforms.  

5.3.2 Design Approach and Evaluation Plan 

Many other platforms can be parameterized and configured to perform many 

tasks. However, when it comes to designing a dedicated hardware or a chip, we need 

flexibility to decide on architectural trade-offs to meet the design budget. Flexibility 

relative to the logic elements, number of clock cycles, number of transistors etc (in most 

cases, the design budget is very stringent). Therefore, to turn an algorithm into a chip, 

using above mentioned parameters we can identify the main contributing factors to 

improve the performance and cut back on some of the parameters to meet the design 

budget. Therefore, the following experimental results illustrate an analysis for potential 

optimized acceleration solutions. 

• In the conventional CPU implementations, frequent delays arise due to the 

communication between CPU & memory. In some cases, using hardware 

accelerations can decrease performance due to, cost of moving the data is larger 

than the gain from the faster hardware execution. These problems can be easily 

reduced in FPGA device by providing large amount of local memory space.  
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• Earlier implementations rarely used multiplication in FPGA since it was fairly 

expensive in terms of resources. Newer FPGA families targeted for many digital 

signal processing applications include high-speed hardware multipliers and 

multiply accumulate units. Making use of all the major advantages of FPGAs over 

CPU devices, we can apply this design to many application domains.  

• On the other hand, FPGA comparison with ASIC involve addressing the 

continuously evolving changes in the neural networks. In the last decade, the 

neural networks have undergo a number of changes and optimization and keeping 

pace with such rapid changes in terms of hardware design will add significant cost 

to deploy a design on hardware.  

In summary, in order to support and handle the computation requirements of 

neural networks, GPUs and FPGAs are the potential solutions. The trend in the hardware 

technology is following towards ensemble architecture with both GPUs and FPGAs. For 

the time being, FPGA seems like a reasonable choice to adapt for a wide range of 

applications at low cost, power consumption. 

5.3.3 Base System-level Design and Internal Architecture for Deep Neural Network 

An L-layer DNN can be represented mathematical [197] as shown in equation (1) 

below: 

F�x; θ� = �f¨°f¨o�° … °f���x� (1) 

where, x: input sample 

 θ: weight parameters, wi 

 F: output function 
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The overall output function in equation (1), F can be simplified as shown in 

equation (2), 

F =  w��� ° f� ° α�o�  �2� 
As mentioned previously, an error function is formulated to adjust the weight 

parameters using stochastic gradient decent. The mathematical equation of error function 

for classification is given in equation (3). 

J«�x, y; θ� =  −〈y, �log ° σ��F�x; θ��〉 �3� 
The error function is minimized by iterating through a loop by means of back-

propagation. The stochastic gradient descent approach is used to find the minimum error 

function values using derivatives, as represented in the equation (4) below: 

∇²³J�x, y; θ� =  ∇²³∗ f¨�x¨�. D∗w¨���x¨���. e¨ =  ∇²³∗ f¨�x¨�. e¨ �4� 

 

Figure 5.2: Base system-level architecture for deep neural network 

The system-level of higher abstraction level is shown in figure 5.3. The base 

system-level design is almost same as mentioned in chapter 3, except the internal 

architecture of user-defined custom IP. The user-defined custom is IP is shown in figure 

5.7. The above generic mathematical framework for L-layered DNN is calculated using 

derivatives with respect to the parameters of each layer to minimize error function. DNN 

has extremely high structural complexity; however, the underlying fundamental 

operations involve matrix-vector computations as illustrated in figure 5.4 & 5.6. 
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Figure 5.3: Internal Architecture and Data-flow for k-layer deep neural network 

The dataflow in a DNN, results in a long dependencies due to chain of back-

propagation but the matrix computations and convolution operations remains unchanged. 

Matrix computations and convolution operations contribute to total of 90% of the overall 

operations [167].  

 

Figure 5.4: Internal Architecture of single neuron 

Constructing a highly parallel computing array to support the common matrix 

computations would efficiently accelerate the training process, as illustrated using a 

single generic module in Figure 5.5. Therefore, in this research our objective seeks to 

provide customized and optimized configurable hardware architectures to support both 

inference as well as training process at low-cost for portable embedded devices.  
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Figure 5.5: Internal Architecture for Input Layer of Deep Neural Network 

Unlike GPUs, we estimate that developing a generic, parameterized and 

configurable architecture has considerable merit to solve the scalabilities issues for 

continuously evolving computational demands of a deep neural network. 

5.3.4 Experimental Platforms 

The accelerator IP for the neural networks is designed using mixed hardware 

description language (both VHDL and Verilog) and as proof-of-concept, we have 

developed DNN model using software codes (Spyder software). Xilinx Platform Studio 

(XPS) is used to build the base system and the Register-transfer Level (RTL) DNN will 

be designed using Xilinx ISE (Integrated Synthesis Environment) & ISim tools. Our 

experimental results are also compared with the baseline software results, to verify the 

correct operation. 
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Figure 5.6: High-level multiple layers deep neural network 
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The proposed DNN accelerator IP is developed using Xilinx’s Virtex 6 family 

FPGA [103]. Specifically, XC6VLX240T-1FFG1156 FPGA [198], which consists of 

high-performance logic slices (37680 slices) with embedded hardware IP resources such 

as 748 DSP48E1 slices, 512MB DDR3-SDRAM and soft microprocessor capabilities. 

For our experiments, we utilize DSP slices efficiently to improve the processing 

capabilities and the logic slices provides a foundation for programmable platform for the 

RTL design. Soft microprocessor, i.e., Micro-blaze, is used for handling the control 

signals between customized-IP for DNN, UART serial ports, AXI communication 

protocols, DDR3-SDRAM, AXI timers and Interrupts. 

MicroBlaze is a 32-bit soft processor based on RISC architecture, available in 

Xilinx embedded development kit (EDK). For our experiments, we have selected the area 

optimization for MicroBlaze. Synthesis of MicroBlaze translates to 5 DSP48E1 slices and 

38 BRAM operating at 100MHz. The micro-blaze handles the initialization tasks for pre-

fetching using AXI Master Burst transfer [199] and AXI timer [120]. The automated 

design to access data [122] from DDR3-SDRAM is stored in the BRAM [200]. 

5.4 Experimental Results and Analysis 

In this section, we present the results and analysis for cancer diagnosis datasets. 

The accuracy of the DNN is a measure of number of correct data classification over the 

total number of test samples, as given in the equation (5). The datasets are partitioned in a 

range of 10 - 90% for training and rest of the data is used to evaluate the accuracy 

performance of DNN classifier. Partitioning the datasets for training and inference 

provides us a method to interpret the tradeoff analysis and the overall efficiency of 

acceleration modules. 
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5.4.1 Case 1: Analysis on Classification Accuracy with Limited Iterations 

Table 26 presents the comparison analysis between our work on SVM and the 

neural network accelerator for relative comparison. In this experiment, we have divided 

the benchmark dataset into varying ratio of training and inference samples. The SVM and 

NN are trained with 10 - 90% of the dataset with an increment of 10% and the rest of the 

data used for inference to evaluate the accuracy performance.  

 

Table 26: Accuracy & Exec time for cancer dataset classification using SVM & NN with 

limited iterations 

  

Trainin

g set 

(%) 

MicroBlaze 

Exec time SVM 

(sec) 

HW Exec 

Time SVM 

(sec) 

MicroBlaze 

Exec time CNN 

(sec) 

HW Exec 

Time CNN 

(sec) 

CNN 

Accurac

y (%) 
RBF RBF 

10 0.04391 0.0102643 0.036265 0.007827879 38.86 

20 0.086489 0.0128378 0.0684011 0.007932034 66.6 

30 0.208964 0.01655639 0.3263731 0.019670391 78.9 

40 0.24173 0.021692 0.6072149 0.021347582 84.37 

50 0.82645 0.0281505 1.27713 0.03476139 86.523 

60 1.09582 0.0301093 1.74163 0.034667513 87.89 

70 1.28426 0.0315973 1.880129 0.032668579 88.67 

80 1.96756 0.0325584 2.286097 0.037346288 90.42 

90 2.68965 0.03374492 2.8942913 0.049193527 91.01 
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Figure 5.7: Plot of accuracy vs. training data size of cancer dataset using SVM and NN 

with limited iterations 

 
 

Table 27: Accuracy & Exec time for cancer dataset classification using SVM & NN with 

Unsynchronized trails 

Traini

ng set 

(%) 

MicroBlaz

e Exec 

time SVM 

(sec) 

HW Exec 

Time SVM 

(sec) 
MicroBlaz

e Exec time 

CNN (sec) 

HW Exec 

Time CNN 

(sec) 

CNN 

Accura

cy (%) 

SVM 

Accura

cy (%) 

RBF RBF 
RBF - 

Emb  

10 0.04391 0.0102643 10.045617 0.217640163 98.2143 73.45 

20 0.086489 0.0128378 10.839301 0.224211084 97.3451 88.63 

30 0.208964 0.01655639 11.3788097 0.209691984 98.2353 89.96 

40 0.24173 0.021692 14.1634256 0.18567331 99.1189 93.19 

50 0.82645 0.0281505 20.820615 0.235712636 97.8873 93.47 

60 1.09582 0.0301093 26.859118 0.277693702 97.9472 93.48 

70 1.28426 0.0315973 28.777553 0.257613382 98.2412 91.96 

80 1.96756 0.0325584 29.966104 0.215443676 98.022 92.27 

90 2.68965 0.0337449 32.0186489 0.220408166 98.6328 92.66 
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Figure 5.8: Plot of accuracy vs. training data size of cancer dataset using SVM and NN 

with unsynchronized iterations 

5.4.2 Case 2: Analysis on Classification Accuracy with Unsynchronized Trails 

For evaluating the execution time and accuracy performance of each classifier is 

tested for almost the same iteration count as SVM to present a insight relative to 

difference performance. The accuracy performance of both the classifier is almost same 

for similar iteration count. However, the execution time required is higher for neural 

networks compared to SVM as shown in Table 26. These results are further utilized to 

validate the correct operation of the hardware IPs as illustrated accuracy vs. data size plot 

(Figure 5.7 & Figure 5.8). 
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5.4.3 Analysis on Execution Time relative to size of training vectors 

The execution time is another major criteria for performance analysis for our 

proposed embedded hardware accelerators for deep leaning applications. In order to 

evaluate our embedded hardware accelerators/architectures, we create embedded 

software architectures for the deep neural network algorithm on the same development 

platform. Our embedded software architectures are executed on the 32-bit MicroBlaze 

processor. The execution times for both the embedded hardware and software 

architectures are obtained using the AXI Timer using cascade timer implementation. 

These execution times are measured in real-time (sec), while our proposed embedded 

architectures are actually running (in real-time) on the chip. In this case, we design the 

AXI Timer in cascade mode to measure the accurate execution times for complete 

training process. This is mainly because in certain scenarios, especially for large datasets, 

the execution times exceed the allowable timer counter value of the AXI Timer 

depending on the number of layers and epochs. In order to resolve the counter overflow 

issue, the AXI timer is designed utilizing two timers in cascade mode.  

The execution times for our proposed embedded architectures for the deep neural 

networks algorithm are obtained with the varying data sizes. These execution times are 

presented in Table 28, 29, for the Cancer benchmark dataset, respectively. Similar to the 

classification accuracy results, three sets of execution times for embedded architectures 

are obtained separately, for general processor time, micro-blaze execution time and 

hardware design time. The execution times for each set (for both the embedded hardware 

and software) are measured 10 times and the average is presented in the aforementioned 

tables, respectively.  
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Table 28: Speedup Comparison – Cancer Dataset 

The execution times for the embedded software and embedded hardware 

architectures for the deep neural networks are illustrated in Figure 10Figure 5.9, 

respectively, for the Cancer benchmark datasets. As illustrated, the execution times 

increase almost exponentially with the increasing data sizes, for both the embedded 

hardware and software architectures. Somewhat similar behaviors are observed when 

using the Ionosphere dataset. 

For our embedded hardware accelerator/architecture with polynomial kernel, the 

speedup increases linearly (from 8 times to 61 times faster than the software 

counterparts) when the percentage of training set increases from 10% to 90%.  

The speedups, resulting from the embedded hardware architectures over 

embedded software, for the deep networks, are presented Table 2828. Figure 5.11 

demonstrate the speedups versus the data sizes (percentage of training set) for our 

embedded hardware accelerators for the deep neural networks for the Cancer benchmark 

dataset, respectively. At a glance, as shown in Figure 5.11, the speedups typically 

increase as the percentage of training set increases.  

 

Data 

size 

Vect 

(%) 
# Vect 

Base-

Line 

MB Exec 

time 

HW Exec 

Time (sec) 

Acc. 

(%) 

Speedu

p /BL 

Speedu

p /MB  

1707 10 57 0.931 0.8844 0.1132 38.86 0.95 7.81 

3414 20 114 0.986 0.9071 0.1014 66.6 0.92 8.94 

5121 30 171 0.99 0.9009 0.0540 78.9 0.91 16.67 

6828 40 228 1.223 1.0028 0.0518 84.37 0.82 19.36 

8535 50 285 1.155 0.8431 0.0259 86.52 0.73 32.54 

10242 60 342 1.113 0.7902 0.0189 87.89 0.71 41.65 

11949 70 399 1.143 0.7772 0.0162 88.67 0.68 47.85 

13656 80 456 1.193 0.7873 0.0140 90.42 0.66 56.19 

15363 90 513 2.24 1.3664 0.0221 91.01 0.61 61.74 
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Figure 5.9: Embedded Software: Execution Times vs. Data Size for Cancer Benchmark 

Dataset, case 1 (above) & 2 (below) 
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Figure 5.10: Embedded Hardware: Execution Times vs. Data Size for Cancer Benchmark 

Dataset, case 1 (above) & 2 (below) 
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100MHz on Virtex-6 FPGA with the baseline python software design on the Intel i7 

processor running at 2.3GHz. In this case, the results for our proposed embedded 

hardware accelerators/architectures are shown in Table 27-29 compared to the software 

design.   

 

Figure 5.11: Embedded Hardware: Speedup vs. Data Size for Cancer Benchmark Dataset 

From these results, it is evident that our proposed embedded hardware 

accelerators achieve superior speedups (up to 61 times), compared to the equivalent 

software running on embedded processor on the same development platform. This 

significant performance improvement is due to several hardware optimization techniques 

incorporated into our embedded hardware architectures, including creating customized 

and optimized architectures by exploiting inherent parallelism and pipeline nature of the 

computations/tasks; designing computations/tasks to overlap with memory access; burst 

transfer and pre-fetching techniques.    
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From the aforementioned results and analysis, it is observed that for our proposed 

embedded hardware accelerators/architectures for the deep neural networks, as the 

number of samples (i.e., vectors) increases, the accuracy results and the speedup results 

also increase. In this case, when the classifier has more samples to learn, it could lead to 

identifying complex patterns. Furthermore, as the size of the matrices is increasing, as 

well as the complexity of the computations/operations is increasing, customized and 

optimized embedded hardware architectures might be the best avenue to accelerate and 

enhance various performance metrics of the CO-based SVM algorithms, compared to the 

conventional computing platforms such as general-purpose processors.  

5.5 Concluding Remarks 

In summary, in order to achieve better performance to handle high-dimensional 

data, software optimization alone cannot provide the required support. It is essential to 

provide hardware support for these applications with customized embedded architecture. 

Our architecture aims to address the major constraints associated with the embedded 

platforms. The area, power consumptions, design reconfiguration, time-to-market are the 

major constraints associated with the embedded platforms. The experimental results are 

encouraging and indeed show a potential gain in utilizing FPGA-based systems to 

support and accelerate deep learning applications, specifically on embedded platforms. 

The compact size of our proposed architectures to dynamically train from the 

unstructured datasets, further enhance the potential of implementing deep learning on 

embedded devices.  
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CHAPTER 6  

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

In our research work, our objective is to provide new architectures, techniques 

and design methodologies to overcome the constraints and the requirements associated 

with big data applications on an embedded platform. We are specifically interested in 

optimizing the Deep Neural Networks (DNN) and Support Vector Machines (SVM) 

classifier, using a Convexity approach, which has not been implemented in previous 

published literature. Our initial investigations reveled that; this capability can be further 

enhanced using the convex optimization method irrespective of the number of inequality 

constraints; efficient ways to accelerate the data computing capabilities. As mentioned in 

section 2, there are several research works on hardware support for general SVM 

algorithm in the published literature. Most of these hardware architectures were not 

generic or parameterized. Also, most of the architectures were not designed with portable 

embedded devices in pretext. None of these works proposed system-level architectures 

and associated techniques to facilitate the real-time machine learning applications. From 

our extensive investigation and to the best of our knowledge, we did not find any 

hardware support or any FPGA-based hardware accelerators, especially for the convex 

optimization-based SVM algorithm, in the published literature, which makes our research 

novel and unique. 

In this research work, we also introduced novel, customized, and optimized 

FPGA-based hardware accelerator for deep neural networks on embedded platforms. Our 

embedded architectures are generic, parameterized, and scalable. Thus, without changing 
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the internal hardware architectures, our embedded designs can be used for different 

datasets with varying sizes, can be executed on different embedded platforms, and can be 

used for various machine learning applications, while satisfying the associated constrains 

of the embedded devices. We also introduced efficient system-level architecture for our 

FPGA-based hardware accelerator IPs. With this system-level design, we designed and 

integrated unique techniques to reduce the memory access latency and to facilitate real-

time data analysis and processing.   

Our embedded hardware accelerator for CO-based SVM executed up to 75 times 

(base level architecture) and 107 times (systolic array architecture) faster than its 

software counterpart running on the embedded microprocessors. Our embedded hardware 

accelerator for DNN executed up to 61 times faster than its software counterpart running 

on the embedded microprocessors. Our embedded designs (both hardware and software) 

achieved up to 100% classification accuracy. These performance metrics are crucial 

especially for real-time machine learning applications, which typically require processing 

a large volume of data. 

 We also introduced lean and compact embedded software architecture for SVM 

and DNN, which was designed to fit into the available resources of the embedded 

microprocessor on chip. The experimental results are encouraging and indeed show a 

great potential in utilizing FPGA-based systems to support and accelerate machine 

learning applications, specifically on embedded platforms. The compact size of our 

proposed architectures as well as the ability of our embedded designs to dynamically 

train from the unstructured datasets, further enhance the potential of implementing 

machine learning on embedded devices. 
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6.2 Future work 

In this research, we have highlighted many opportunities and obstacles to 

incorporate in the FPGA-based design. Several large-scale software packages have been 

developed for many application domains. But some of these domains can be optimized 

further by appending the above mentioned methods. In future, the existing systems 

already uses several management schemes such as low-precision computation, pre-

fetching, and dynamic scaling to ensure synergy of many techniques and it is also 

important for a smooth integration of the new techniques in commercial systems. As the 

quest for performance confronts resources constraints, major breakthroughs in computing 

efficiencies are expected from many conventional or unconventional approaches. 

In this proposal, we have provided the details of system-level architecture for 

supervised learning, investigated accelerations techniques relative to systolic arrays, and 

developed an efficient memory management technique. Using the knowledge gained to 

further establish a framework for instruction set architecture for AI chip design would be 

valuable contribution to accelerate AI applications and support global digital 

transformation. However, there are several challenges which still need to be addressed. 

Some of the potential future directions presented below are worth investigating further. 

• One of the challenges we came across to solve quadratic optimization was the 

selection of hyper-parameters for efficient convergence. Prior to training process, we 

hope that providing another independent module for model selection criterion based 

on certain probability estimation could improve the training time as well as reduce the 

generalization error efficiently. 
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• In this work, we have developed the embedded architecture for sequential minimal 

optimization, which restricts to two working sets. For our future work, we intend to 

develop generalized decomposition methods to solve the sub-problem of quadratic 

programming. 

• Our embedded architecture is developed based on the duality theory formulation. 

Further investigation is recommended to provide hardware support for primal 

minimization using interior point method to address the computational burden of 

iterative process of convex optimization. 

• In this research, we have provided the hardware support for convex optimization. We 

intend to explore semi-definite programming independently for different 

mathematical optimizations. Also, providing the flexibility to incorporate the 

hyperbolic tangent kernels. 

• Also, as future work, we are planning investigate ways to incorporate partial and 

dynamic reconfiguration features (as stated in [222],[223]) and HDL code 

optimization techniques (as stated in [224]) into our FPGA-based 

accelerators/architectures to further enhance the area-efficiency and flexibility, 

similar to our partial and dynamic reconfiguration works in 

[204],[212],[225],[226],[227],[228],[229]. In addition, we are investigating ways to 

integrate our multi-ported memory architectures, including [230],[231],[232],[233], to 

facilitate the parallel processing modules in our proposed systolic array designs, to 

further enhance the speedup, while considering the speed-space tradeoffs. 
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APPENDIX A 

A.1 Support Vector Machines – Scikit Learn 

Scikit-learn [132] is a free python machine learning library [201], which provides 

simple, efficient tools for classification, regression, clustering, dimensionality reduction, 

model selection and preprocessing. Scikit-learn library is built using the open-source 

libraries such as numPy, SciPy, Matplotlib, which are easier for the user to modify the 

existing programs. 

For Classification, various types of supervised and semi-supervised algorithms are 

available, among which the following command serves as a simple example to illustrate 

utilization of the tool for support vector machines. 

class sklearn.svm.SVC(C=1.0, kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, shr

inking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verb

ose=False, max_iter=-1, decision_function_shape=’ovr’, random_state=None) 

Table 29. List of parameters for support vector machine in Scikit learn 

Serial Parameter Default Required Data type Usage 

1 C 1 Optional Float Soft margin 

2 kernel rbf Optional String If kernel is 
selected 

3 degree 3 Optional int If poly kernel is 
selected 

4 gamma auto optional float  

5 coef0 0 optional float It is only 
significant in poly 
and sigmoid 

6 Shrinking TRUE optional Boolean  

7 Probability FALSE optional Boolean  

8 tol 1.00E-03 optional Float  

9 cache_size  optional Float If kernel is used 

10 class_weight None optional {dict, 'balanced'} 

11 verbose FALSE  boolean  

12 max_iter -1 Optional int  

13 decision_function
_shape  

ovr    

14 random_state None Optional int  

15 Step size 0.01 Optional float  
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Table A.1 lists all the possible parameters available to modify a classifier suitable 

for specific applications. Some of the parameters such as C: is a penalty parameters used 

to limit the misclassification rate by adding a penalty to the classifier. Another parameter 

called kernel provides different mathematical kernel options such as linear, polynomial, 

Gaussian kernel, sigmoid and also custom kernels. Table A.2 lists additional functions 

available to train a support vector machine classifier. 

Table 30. List of additional functions for support vector machine in Scikit learn 

Attributes usage Description  

clf.support_vectors # get support vectors array-like, shape = [n_SV, 
n_features] 

clf.support_ # get indices of support vectors array-like, shape = [n_SV] 

clf.n_support_ # get number of support vectors for 

each class 

array-like, dtype=int32, shape = 
[n_class] 

clf.dual_coef_ Coefficients of the support vector in the 
decision function. For multiclass, 
coefficient for all 1-vs-1 classifiers. The 
layout of the coefficients in the 
multiclass case is somewhat non-trivial. 
See the section about multi-class 
classification in the SVM section of the 
User Guide for details. 

array, shape = [n_class-1, n_SV] 

clf.coef_ Weights assigned to the features 
(coefficients in the primal problem). 
This is only available in the case of a 
linear kernel. coef_ is a readonly 
property derived from dual_coef_ and 
support_vectors_. 

array, shape = [n_class-1, 
n_features] 

clf.intercept_ Constants in decision function. array, shape = [n_class * (n_class-
1) / 2] 

Table 31. Code example for support vector machine in Scikit learn 

Examples   [132] 

from sklearn import svm 

import numpy as np 

import matplotlib as mplt 

X = [[0, 0], [1, 1]] 

y = [0, 1] 

clf = svm.SVC() 

clf.fit(X, y)   

print(clf.support_vectors) 
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A.2 Datasets for Classification 
Details of the datasets [122] used to evaluate the classifier are as follows: 

Table 32. Wisconsin Breast Cancer diagnostic datasets 

Total of Samples 569 

  

Dataset Wisconsin Cancer Dataset 

Samples per 

class 

212 (M), 357 (B) 

Total of Samples 569 

Dimensionality 30 

Features Real, Positive 

Link https://scikit-

learn.org/stable/modules/generated/sklearn.datasets.load_breast_can

cer.html#sklearn.datasets.load_breast_cancer 

Download 

Dataset 

https://goo.gl/U2Uwz2 

  

Stage I Kernel Computations 

Stage II Convex Optimization 

Stage III Testing 

Total Summation of the overall execution time for the above stages 

Accuracy (%) (Number of correct classified data / total number of testing vectors) 

* 100 

Speedup Hardware execution time / Software execution time 

Linear 
 

Poly 
 

Gaussian 
 

 d: degree, γ: Coef0 

C: Penalty 

parameter 

Affects all kernel, it is dependent on the objective function, but not on 

the kernel function 

# sv Total number of support vector out of # of training samples 

Windows 7 

Home premium 

i7-3610QM @ 2.3GHz, 8GB RAM, 64-bit OS 

Micro-Blaze 32-bit soft processor, 100MHz, 128kB BRAM 

Hardware 

module  

100MHz 
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Table 33. Wisconsin Breast Cancer diagnostic datasets – Data size 

Training Set 

Percentage # train samples # test samples Train Data Size Test Data Size 

10% 57 512 54720 491520 

20% 114 455 109440 436800 

30% 171 398 164160 382080 

40% 228 341 218880 327360 

50% 285 284 273600 272640 

60% 342 227 328320 217920 

70% 399 170 383040 163200 

80% 456 113 437760 108480 

90% 513 56 492480 53760 

Table 34. Ionosphere datasets 

Total of Samples 351 

Dataset Ionosphere Dataset 

Samples per class (b),  (g) 

Total of Samples 351 

Dimensionality 34 

Features Real, Integer 

Table 35. Ionosphere datasets – Data size 

 

Training Set 

Percentage # train samples # test samples Train Data Size Test Data Size 

10% 36 315 34560 302400 

20% 71 280 68160 268800 

30% 106 245 101760 235200 

40% 141 210 135360 201600 

50% 176 175 168960 168000 

60% 211 140 202560 134400 

70% 246 105 236160 100800 

80% 281 70 269760 67200 

90% 316 35 303360 33600 
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