Chapter

Sampling and
Aliasing

a

With this chapter we move the focus from signal modeling and
analysis, to converting signals back and forth between the analog

(continuous-time) and digital (discrete-time) domains. Back in
Chapter 2 the systems blocks C-to-D and D-to-C were intro-
duced for this purpose. The question is, how must we choose the
sampling rate in the C-to-D and D-to-C boxes so that the analog
signal can be reconstructed from its samples.

The lowpass sampling theorem states that we must sample
at arate, f_, at least twice that of the highest frequency of interest
in analog signal x(¢). Specifically, for x(¢) having spectral con-
tent extending up to B Hz, we choose /. = 1/T > 2B in form-
ing the sequence of samples

x[n] =x(nT,),—0<n<co. 4.1)

Sampling

 We have spent considerable time thus far, with the continu-
ous-time sinusoidal signal

x(t) = Acos(wt+ ), 4.2)
where 7 1s a continuous variable

e To manipulate such signals in MATLAB or any other com-
puter too, we must actually deal with samples of x(?)
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Sampling

e Recall from the course introduction, that a discrete-time sig-
nal can be obtained by uniformly sampling a continuous-time
signalat ¢, = nT,1ie., x[n] = x(nT))

— The values x[n] are samples of x(t)

— The time interval between samples 1s 7',
— The sampling rateis f, = 1/T

— Note, we could write x[n] = x(n/f))

e A system which performs the sampling operation is called a
continuous-to-discrete (C-to-D) converter

Ideal
x(t) ———— > CtoD — x[n] = x(nT)
Converter
TS
Simple Sampler TS
Switch Model  x(¢) ® x[n] = x(nT)

Momentarily close to take a sample

Electronic _
Subsystem: Analog B-bits, e.g., 16, 18

ADC or to _
A-to-D x(#) ™ pigtal | /= *lnl = x(@nTy)

f— Converter
$ O\ T

SAR Others

Flash AY

SAR = successive approximation register
AY = delta-sigma modulator (oversampling)
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Sampling

e A real C-to-D has imperfections, with careful design they can
be minimized, or at least have negligible impact on overall
system performance

e For testing and simulation only environments we can easily
generate discrete-time signals on the computer, with no need
to actually capture and C-to-D process a live analog signal

* In this course we depict discrete-time signals as a sequence,
and plot the corresponding waveform using MATLAB’s stem

function, sometimes referred to as a lollypop plot
>> n = 0:20;
>> x = 0.8."n
>> stem(n,x, 'filled', 'b', 'LineWidth', 2)
>> grid
>> xlabel ('Time Index (n)"')
>> ylabel ('x[n]")

1@ ! ! ! ! ! ! ! ! !
0.9F
‘ ‘ ‘ 0, n<0 : ‘
o8 @ o x[n] = R
: 08 ,n=>0
o7p | 1
®
o6f | | :
Sos| | | @
8 xWaveform values o nlyat : :
04r -1 1 " integer sample values SRR
0.3} B :
o2ttt 1Lt
VR T S RN [N ER REE N O TT :
0 TT??,’QQ_Q_.
20

0 2 4 6 8 10 12 14 16 18
Time Index (n)
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Sampling

Sampling Sinusoidal Signals

* We will continue to find sinusoidal signals to be useful when
operating in the discrete-time domain

 When we sample (4.2) we obtain a sinusoidal sequence
x[n] = x(nT,)
= Acos(onT + ¢) (4.3)

= Acos(on + )

* Notice that we have defined a new frequency variable

® ol = @ rad, 4.4)
/,
S
known as the discrete-time frequency or normalized continu-
ous-time frequency

— Note that ® has units of radians, but could also be called
radians/sample, to emphasize the fact that sampling is
involved

— Note also that many values of ® map to the same ® value
by virtue of the fact that 7'  is a system parameter that is
not unique either

— Since ® = 2nf, we could also define ]A‘E ST, as the dis-
crete-time frequency in cycles/sample

Example: Sampling Rate Comparisons

e Consider x(z) = cos(2m- 60 -¢) at sampling rates of 240
and 1000 samples per second
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Sampling

— The corresponding sample spacing values are

T = 1 =41666ms T, =—— = Ims
240 1000
>> t = 0:1/2000:.02;
>> x = cos (2*pi*60*t); $ approx. to continuous-time

>> t240 = 0:1/240:.02;

>> n240 = 0:1length(t240)-1;

>> x240 = cos (2*pi*60/240*n240); % fs = 240 Hz

>> axis ([0 4.8 -1 1]) % axis scale since .02*240 = 4.8

>> t£1000 = 0:1/1000:.02;
>> nl000 = 0:1length (t1000)-1;
>> x1000 = cos (2*pi*60/1000*n1000); % fs = 1000 Hz
1 T T T T T T T
0.5 i
£ ot R
x Continuous
~0.5f N
_1 1 1 1 1 1 1 1 1

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Time (s)
1‘ T T T T T B T T T
4 samples/period
0.5F BRI R :
<
c% 0 L 4 @
i - fs =240 Hz
~0.5F T
_1 1 1 1 1 1 1 1 1

0 0.5 1 1.5 2 25 3 3.5 4 4.5

' 16.67 samples/period
o OS] h ”T.
- ‘ | | ‘ |
2 [ *
2T ¢
- o e fs=1000Hz T

0 2 4 6 8 10 12 14 16 18 20
Sample Index (n)

S
(&)
T
o—|
@
o——
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The analog frequency is 27 - 60rad/s or 60 Hz
When sampling with /. = 240 and 1000 Hz

a9 = 27 - 60/240 = 27(0.25) rad
21 -60/1000 = 27(0.06) rad

631000
respectively
The sinusoidal sequences are

Xr49ln] = cos(0.57n)

X1000L72] = c0s(0.127n)

respectively

Sampling

It turns out that we can reconstruct the original x(z) from

either sequence

Are there other continuous-time sinusoids that when sam-

pled, result in the same sequence values as x,,, and x4, ?

Are there other sinusoid sequences of different frequency ®

that result in the same sequence values?

The Concept of Aliasing

In this section we begin a discussion of the very important

signal processing topic known as aliasing

Alias as found in the Oxford American dictionary: noun

— A false or assumed identity: a spy operating under an alias.

— Computing: an alternative name or label that refers to a file, com-
mand, address, or other item, and can be used to locate or access it.
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Sampling

— Telecommunications: each of a set of signal frequencies that, when
sampled at a given uniform rate, would give the same set of sampled
values, and thus might be incorrectly substituted for one another
when reconstructing the original signal.

e Consider the sinusoidal sequence
x,[n] = cos(0.4mn) (4.5)

— Clearly, ® = 0.4n
 We know that cosine is a mod 27wt function, so
X,[n] = cos(2.4nn)
= cos[(2+0.4)nn] = cos(0.4nn + 2mn) (4.6)
= cos(0.4nn) = x,[n]
— We see that ® = 2.41 gives the same sequence values as
® = 0.47,s0 2.4 and 0.47n are aliases of each other
* We can generalize the above to any 27t multiple, i.e.,
® = og+2nl,l =0,1,2,3, ... 4.7)
result in identical frequency samples for cos(®;n) due to the
mod 21 property of sine and cosine

* We can take this one step further by noting that since
cos(0) = cos(—0), we can write

cos(1.6mtn)

= cos[(2-0.4)nn] = cos(2nn —0.4mn) (4.8)
= cos(—0.4ntn) = cos(0.47mn)

x3[n]
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Sampling

— We see that ® = 1.67 gives the same sequence values as
® = 0.4m,so 1.6n and 0.47 are aliases of each other

We can generalize this result to saying

o =2nl-mg, !/ =0,1,2,3, ... (4.9)
result in identical frequency samples for cos(®;n) due to the
mod 271 property and evenness property of cosine

— This result also holds for sine, expect the amplitude is
inverted since sin(—0) = —sin(0)

In summary, for any integer /, and discrete-time frequency
®¢, the frequencies

®g, O¢ + 27l, 2l — g, [ = 1,2,3, ... (4.10)
all produce the same sequence values with cosine, and with
sine may differ by the numeric sign

— A generalization to handle both cosine and sine is to con-
sider the inclusion of an arbitrary phase ¢,

Acos[(0+2n)n+ ¢] = Acos[own +2nl-n+ ¢]
= Acos(on + ¢)
Acos[(2nl—®)n—¢] = Acos[2nl-n—on—-¢]  (4.11)
= Acos(— on — )
= Acos(on + )
— Note in the second grouping the sign change in the phase

The frequencies of (4.10) are aliases of each other, in terms
of discrete-time frequencies
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Sampling

 The smallest value, ® € [0, r), is called the principal alias

e These aliased frequencies extend to sampling a continuous-
time sinusoid using the fact that ® = o7, or ® = ®/ T,
= @ f,» thus we may rewrite (4.10) in terms of the continu-
ous-time frequency o,

®g, Oy + 21lf, 2nlf -, 1 = 1,2,3... (4.12)
— In terms of frequency in Hz we also have
fofot U lfg—fp ! = 1,2,3... (4.13)

* When viewed in the continuous-time domain, this means that
sampling A cos(2mfyt + ¢) with £ — nT results in

Acos[2nfy(nT,) + ¢] = Acos[2n(fy+ If)(nT,) + ¢]
= Acos[2n(lf, - fo)(nT,) -]

being equivalent sequences for any n and any [

14)

Example: Input a 60 Hz, 340 Hz, or 460 Hz Sinusoid with
f, = 400 Hz

e The analog signal is
x (1) = cos(2n60f+7/3)
X,(t) = cos(2n340t—-7/3)
x5(#) = cos(2n460t+1/3)

e We sample x,(¢),i=1,2,3 atrate f = 400 Hz
>> ta = 0:1/4000:2/60; % analog time axis
>> xal = cos (2*pi*60*ta+tpi/3);
>> xa2 = cos (2*pi*340*ta-pi/3);

ECE 2610 Signals and Systems 4-9



>>
>>
>>
>>
>>

x,(0), %, [n]

/\
S

Sampling

xa3 = cos (2*pi*460*ta+pi/3);
tn = 0:1/400:2/60; % discrete-time axis as n*Ts

xnl = cos (2*pi*60*tn+pi/3);
xn2 = cos (2*pi*340*tn-pi/3);
xn3 = cos (2*pi*460*tn+pi/3);

f1—6OHz oS —400HZ
1 .

-
;/ N\ // ™

/ \ /AII the sample
-0.5r \ values match <]
/ 1 1 I\ /I 1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
f> =340 Hz, f, = 400 Hz

°-2W\/W\/\/\M

0 0.005 0. 015 0. 02 0.025 0.03 0.035

fy =460 Hz, f, = 400 Hz

W/\M/\/ LT

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Sample Index x TS = nTS (s)

We have used (4.14) to set this example up, so we expected
the sample values for all three signals to be identical

This shows that 60, 340, and 460, are aliased frequencies,
when the sampling rate 1s 400 Hz
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Sampling

— Note: 400 - 340 = 60 Hz and 460 - 400 = 60 Hz

The discrete-time frequencies are w; = 0.3w, .77, 2.3 7w

— Note: 2n— 1.7t = 03xn radand 2.3t —-2n = 0.37 rad

Example: Scos(7.3nn + n/4) versus Scos(0.7nn + n/4)

>>
>>
>>
>>
>>
>>

To start with we need to see if either
731 = 0.7n + 2wl
or 7.3n = 2n/—-0.7w
for [ a positive integer

Solving the first equation, we see that / = 3.3, which is not
an integer

Solving the second equation, we see that / = 4, which is an
integer
0.7m 7.371

SN TENE T S—

0

T 21 R¥ 41 51 6T Tm 87

What are some other valid alias frequencies?

The phase does not agree with (4.11), so we will use MAT-
LAB to see if 5co0s(0.7nn + n/4) — Scos(0.7nn—mn/4) to
make the samples agree in a time alignment sense

n = 0:10; % discrete time axis
x1 = 5*cos (7.3*pi*n+pi/4);
x2 = 5*cos (0.7*pi*n+pi/4);
x3 = 5*cos (0.7*pi*n-pi/4);

na = 0:1/200:10; % continuous time axis
xla = 5*cos(7.3*pi*na+pi/4);
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Sampling

>> x2a = 5*cos (0.7*pi*na+pi/4);

>> x3a = 5*cos (0.7*pi*na-pi/4);
Scos(7.3nn+m/4)

e

0 1 2 3 4 5 6 7 8 9 10

[n]

Agree

se
%
o
|‘_—._|_|_
= 0—
Lo

|
(¢)]

Samples match,
but wrong pha

x,In]
o
"r
—e
.
—O)

|

(¢)]
e
"r

) S—
S
=

~
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Sample Index (n)

o
-
mihl"
w

The Spectrum of a Discrete-Time Signal

e As alluded to in the previous example, a spectrum plot can be
helpful in understanding aliasing

* From the earlier discussion of line spectra, we know that for
each real cosine at @, the result is spectral lines at ®

* When we consider the aliased frequency possibilities for a
single real cosine signal, we have spectral lines not only at
+®, but at all 21t/ frequency offsets, that is
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Sampling

toog2nl,l = 0,1,2,3, ... (4.15)

e The principal aliases occur when / = 0, as these are the only
frequencies on the interval [—m, )

Example: x[n] = cos(0.47wn)

e The line spectra plot of this discrete-time sinusoid is shown
below

Principal |
,( Aliases) 2n Offset

2

-2 Offset

* A particularly useful view of the alias frequencies is to con-
sider a folded strip of paper, with folds at integer multiples of
7, with the strip representing frequencies along the w-axis

Folded Strip is the ® Axis

Principle
alias range

2T+ O —® o 2T—O O+ 27 AT —®
0 0 0 0 0 0

All of the alias frequencies are on a the same line when the paper
is folded like an accordian, hence the term folded frequencies.
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Sampling

The Sampling Theorem

* The lowpass sampling theorem states that we must sample at
a rate, f_, at least twice that of the highest frequency in the
analog signal x(¢). Specifically, for x(¢) having spectral con-
tent extending up to B Hz, we must choose f, = 1/T,>2B

Example: Sampling with /. = 2000 Hz

* When we sample an analog signal at 2000 Hz the maximum
usable frequency range (positive frequencies) is 0 to f /2 Hz

e This is a result of the sampling theorem, which says that we
must sample at a rate that is twice the highest frequency to
avoid aliasing; in this case 1000 Hz is that maximum

e If the signal being sampled violates the sampling theorem,
aliasing will occur (see the figure below)

Folding of Frequencies About % Is

)

2 2500

=3 N

s I

S -.2000

G <

o >

Py O

% = 1500 ¢

: F

L £ 1000 : 1

LB ‘::) Folding Freq = 5 fs
<q‘§ g 500

S [

g T =/ (H2)
o

0 500 1000 1500 2000 2500
Input Frequency f, (Hz)
| | | | | -0 =2
0 T 27 fS
(rad)
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Sampling

* An input frequency of 1500 Hz aliases to 500 Hz, as does an
input frequency of 2500 Hz

e The behavior of input frequencies being converted to princi-
ple value alias frequencies, continues as f increases

e Notice also that the discrete-time frequency axis can be dis-

played just below the continuous-time frequency axis, using
the fact that = 27f/f, rad

* We can just as easily map from the w—axis back to the con-
tinuous-time frequency axis via /' = @f,/(2n)

e Working this in MATLAB we start by writing a support func-
tion
function f out = prin alias(f in,fs)
f out = prin alias(f 1in, fs)

o® o° oP°

Mark Wickert, October 2006
f out = £ in;

for n=1l:length(f in)
while f out(n) > fs/2
f out(n) = abs(f out(n) - fs);
end
end

* We now create a frquency vector that sweeps from 0 to 2500

and assume that /. = 2000Hz
>> £ = 0:5:2500;
>> f alias = prin alias(f,2000);
>> plot (f, )
>> hold
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Sampling

Current plot held

>> plot (f,f alias, 'r")

>> grid

>> xlabel ('Frequency (Hz) ")

>> ylabel ('Apparent Frequency (Hz) ")
>> print -tiff -depsc f alias.eps

2500 - . . .

Before sampling

2000

1500

1000

Apparent Frequency (Hz)

- After sampling
- with fg = 2000 Hz

500

0 500 1000 1500 2000 2500
Frequency (Hz)

Example: Compact Disk Digital Audio

e Compact disk (CD) digital audio uses a sampling rate of
f, = 44.1kHz

 From the sampling theorem, this means that signals having
frequency content up to 22.05 kHz can be represented

 High quality audio signal processing equipment generally
has an upper frequency limit of 20 kHz

— Musical instruments can easily produce harmonics above
20 kHz, but human’s cannot hear these signals
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Sampling

e The fact that aliasing occurs when the sampling theorem is
violated leads us to the topic of reconstructing a signal from
its samples

* In the previous example with /. = 2000Hz, we see that tak-
ing into account the principle alias frequency range, the
usable frequency band is only [0, 1000] Hz

Ideal Reconstruction

* Reconstruction refers using just the samples x[n] = x(nT)
to return to the original continuous-time signal x(?)

* Ideal reconstruction refers to exact reconstruction of x(?)
from its samples so long as the sampling theorem is satisfied

* In the extreme case example, this means that a sinusoid hav-
ing frequency just less than f /2, can be reconstructed from
samples taken at rate f

e The block diagram of an ideal discrete-to-continuous (D-to-
C) converter 1s shown below

Ideal
il > DioC > ()
Converter
1
Tf T
S TS

* In very simple terms the D-to-C performs interpolation on the
sample values y[n] as they are placed on the time axis at
spacing 7' 8
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Sampling
— There is an ideal interpolation function that is discussed in

detail in Chapter 12 of the text

e Consider placing the sample values directly on the time axis
y(2)

-~ 1 Ise width << T,
b y[01}, - * ]\y[2] e ’
=21 T H i I3]

m\\ _TS /{ ﬁ\ 4T¢ STV 6T¢ /, t
2T \[u1; T, 2T, 3TN . ng]
b — =y
yl4l yIs5]

e The D-to-C places the y[n] values on the time axis and then
must interpolate signal waveform values in between the
sequence (sample) values

e Two very simple interpolation functions are zero-order hold
and linear interpolation

e With zero-order hold each sample value is represented as a
rectangular pulse of width T and height y[n]

— Real world digital-to-analog converters (DACs) perform
this type of interpolation

e With linear interpolation the continuous waveform values
between each sample value are formed by connecting a line
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Sampling

between the y[n] values

o yl-2] y(1) y[1] Similar to actual
’ (2] y[3] DAC output
Zero-Ord N e g S
H?)Tg In[efpr V0] RS AT
) Y —T / ~ S
—s L—" st er, T,
2T N / T 2T. 3T
S \[ 1] S S S N I
Y= p——
yvi4l  yI5] ylé]
y(2)
S y[l]

y[2]

Linear N y[0]] =
2] N}
Interp.
A\ _TS / 4TS‘ STS 6TS / {
_2TS\\V/ TS 2TS 3Tv
y[-1] — y[6]

y4] yI5]

* Both cases introduce errors, so it is clear that something bet-
ter must exist

e For D-to-C conversion using pulses, we can write

y(t) = 3 Mnlp(t-nT,) (4.16)

n = —oo
where p(?) is a rectangular pulse of duration T

A complete sampling and reconstruction system requires
both a C-to-D and a D-to-C

x(1) Ideal x[n] Direct | y[n] Ideal (1)
—— | C-to-D |—» Connection —» D-to-C ———»
Converter DSP System Converter

y[n] = x[n] ?
?f /s

N
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Sampling

e With this system we can sample analog signal x(#) to pro-
duce x[n], and at the very least we may pass x[n] directly to
y[n], then reconstruct the samples y[#n] into y(¢)

— The DSP system that sits between the C-to-D and D-to-C,
should do something useful, but as a starting point we con-
sider how well a direct connection system does at returning
y(1) = x(1)

— As long as the sampling theorem is satisfied, we expect

that y(¢) will be close to x(#) for frequency content in x(¢)
that is less than f /2 Hz

— What if some of the signals contained in x(¢) do not satisfy
the sampling theorem?

— Typically the C-to-D 1s designed to block signals above
f,/2 from entering the C-to-D (antialiasing filter)

— A practical D-to-C is designed to reconstruct the principle
alias frequencies that span

o e[-n,n]l<fel-f./2,1,/2] 4.17)

ECE 2610 Signals and Systems 4-20



Spectrum View of Sampling and Reconstruction

Spectrum View of Sampling and Reconstruc-
tion
e We now view the spectra associated with a cosine signal
passing through a C-to-D/D-to-C system
* Assume that x(7) = cos(2mnf,?)
 The sampling rate will be fixed at f, = 2000 Hz

7. = 2000 Hz Spectrum of 500 Hz Cosine x(f)
S
| | 1 | |
| | > | |
| | | |
| | | |
| | | |
~2000 ~1000 -500 o 500 1000 2000 (,fz)
: Spectrum :of Sampled 500 Hz Cosine:x[n] = y[n] :
Alias | Alias 1 Alias | Alias
[ | [ | [ | [ |
n | m | 2 L .
1 | . | | 1 | 1
[ | 1 | | [ | [ (l'aAd)
_n | ] | | N | | N
-2n -m 057 0 057 27
—-2000 —~1000 0 1000 2000 (Hfz)
: Spectrum:of Reconstructed 500 Hz C%osme y(t) :
| | 1 | | Reconstruction
o Lo e
| | | |
| | | | f
-2000 —~1000-500 0 500 1000 2000 (Hz)
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Spectrum View of Sampling and Reconstruction

7. = 2000 Hz Spectrum of 1500 Hz Cosine x(f)
S
| | 1 | |
| | 5 | |
| | | |
| | | |
| | | |
~2000 ~1000 -500 0 500 1000 2000 (,fz)
: Spectrum +f Sampled 1500 Hz Cosin% x[n] = y[n] :
Alias Alias — - 1— Alias  Alias
[ ' [ 3 [ ! [
| | | | | | | |
| | | | | | | |
1 | ' 1 1 ' | i (r Ad)
S | ' | | ' | | RN
2n 15t —m -057n O 05 g 15n 2x P
—-2000 —~1000 0 1000 20|00 (Hz)

Spectrum :of Reconstructed 1500 Hz #Dosine y(t)
L

|
|
| ' 5 ' Reconstruction
: : IA/K: Band
|
| l l |
| [ | | f
-2000 —1000 -500 0 500 1000 2000 (Hz)

e We see that the 1500 Hz sinusoid is aliased to 500 Hz, and
when it is output as y(¢), we have no idea that it arrived at the
input as 1500 Hz

* What are some other inputs that will produce a 500 Hz out-
put?

The Ideal Bandlimited Interpolation

e In Chapter 12 of the text it is shown that ideal D-to-C conver-
sion utilizes an interpolating pulse shape of the form

p(t) = 2 —0 <t <0 (4.18)
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Spectrum View of Sampling and Reconstruction

e The function sin(nx)/(mx) is known as the sinc function

e Note that interpolation with this function means that all sam-
ples are required to reconstruct y(¢), since the extent of p(¢)
1s doubly infinite

— In practice this form of reconstruction is not possible

1

p(?)

Zero crossings
at integer multiples
of Ts

e A Mathematica animation showing that when the sinc()
pulses are weighted by the sample values, delayed, and then
summed, high quality reconstruction (interpolation) is possi-
ble

— The code used to create the animation

Manipulate|[
Show[Plot[Cos[2ft+¢], {t, 0, 10}, PlotStyle » {Dashing[0.01], RGBColor[1l, O, 0]}],
Plot[Sum[Cos[2 7 fn +¢] Sinc[x (t-n)], {n, O, 10}], {t, O, 10},

PlotStyle -» {Thick, RGBColor[0, 1, 0]}], DiscretePlot[Cos[2 7 fn +¢],

{n, 0, 10}, Filling -» Axis, PlotStyle » {PointSize[.02], RGBColor[1l, 0, 0]}],
Plot[Table[Cos[2w fn + ¢] Sinc[n (t-n)], {n, O, 10}], {t, O, 10}, PlotRange - All],
PlotRange - All],

{{f£,1/10}, {1/2,1/3,1/4,1/10, 1/20}}, {{¢, 0}, {O, m/ &, m/ 2}}]
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Spectrum View of Sampling and Reconstruction

e The final display showing an interpolated output for a single
sinusoid
— The input signal is x(¢) = cos(2nft+ ¢) and we assume
that 7, = 1, so in sampling we let  — n
— With f = 1/4 (4 samples per period) and ¢ = n/4 we
have the following display:

f % % % % % Green thick = intepolated output
Red dashed = input
Blue thin = sinc interpolated samples
0] ﬂ z j Red points = sample value
4
1.0+ ~ _
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